
Coimbra, Portugal September 3 – 7, 2007 
International Conference on Engineering Education – ICEE 2007 

Parallel Software Engineering Student Projects 
 

Juha Taina 
University of Helsinki, P.O. Box 68, FIN-00014 UNIVERSITY OF HELSINKI  

taina@cs.helsinki.fi 
 
 

Kimmo Simola1 
 

                                                           
1 Kimmo Simola, University of Helsinki, kimmo.simola@cs.helsinki.fi 

Abstract –  
Software engineering education requires a practical 
course where students can learn processes and practices 
in a controlled environment. Since software development 
is usually done in teams, such a course should be a team 
work course.  Due to this, we have a one-semester 
software engineering project where five to seven students 
form a team.  Each team has an assigned customer who 
needs a software product. Next to traditional one-team 
projects, we have parallel team projects where several 
teams have the same customer and problem scope. The 
teams work separately and optimally they do not have 
any cooperation. Each team has its own product to 
develop from equal specifications. As a result, the 
customer gets several products from the same original 
specification. After three years of parallel projects, the 
resulting software has been unique enough for various 
comparisons. In this paper, we summarize our 
experiences with parallel teams and draw conclusions of 
their advantages and disadvantages. 
 
Index Terms – Software engineering education, Student team 
work, Parallel project, Empirical software engineering    

INTRODUCTION  

There is a clear need for a practical course in software 
engineering education. Not only is such a course useful in 
learning important software engineering skills in practice, 
but it is also useful in empirical software engineering 
research.  Indeed, one of the most interesting software 
engineering education research fields is to summarize 
experiences of student software engineering projects. 

The structure of the course may vary from school to 
school, but most schools have a student software engineering 
project. For instance, Dawson lists in his article twenty tricks 
to use in software engineering course training [4].  Alfonso 
and Mora have reported their experiences in software 
engineering group work [1], Brazier et al. have written an 
article about their software engineering student projects in 
Brazil [2] and Coppit and Haddox-Schatz report how their 
large team projects work in software engineering courses [3].  
Pletch  and Agajanian report a project that closely resembles 
to real-world software projects [5]. All these and many 
others have been reported in recent literature.  Student 
software engineering team work is a core course in a 
software engineering education of any level. 

At the University of Helsinki, Department of Computer 
Science, we have a software engineering project course 
where students are able to get a feel of software development 
in a safe environment. It is not only students that benefit 
from the course, since the projects have customers with real 
software needs. We may also conduct experiments at the 
Department using the project teams. There are more 
opportunities to conduct experiments than there are feasible 
experiments, since there are about 20 project teams every 
year (some are even held during a summer semester).  

Using software engineering teams in experiments is 
common in empirical software engineering research.  While 
students are not professional software engineers, they are not 
total amateurs either.  As Tichy has mentioned, students can 
be used in experiments when certain conditions are met [7].  
We have found that student software engineering projects are 
a very good platform for such experiments.  This was our 
main goal when we first started to use parallel projects where 
several teams work individually on the same software 
problem.  

In this paper, we give an overview of the software 
engineering project course and discuss several approaches to 
doing research using the project teams. Along with the 
experiment settings, we also summarize the results of the 
experiments we have conducted so far.  

The rest of the paper is organized as follows. We will 
discuss the software engineering projects of the Department 
concisely. This information serves as a base for a description 
of parallel project setting used to conduct research. After 
that, we will discuss the actual experiments we have 
conducted so far and reflect upon the results of these 
experiments. Finally, we will analyze the lessons we have 
learned during the parallel projects. 

SOFTWARE ENGINEERING PROJECTS IN UNIVERSITY OF 
HELSINKI  

The software engineering project is a mandatory course for 
all computer science majors at the University of Helsinki. It 
is often the last course before the Bachelor’s thesis. It lasts 
one full semester and requires 17-20 hours of work from 
each participant every week. There are about seven project 
groups every semester and each of them consists of 5-7 
students and an instructor. 

The projects follow either a linear or an iterative process 
model. The iterative model may have 2-3 short iterations. 
The process model and number of iterations are a decision 
made by the project group but we remind the students that 



Coimbra, Portugal September 3 – 7, 2007 
International Conference on Engineering Education – ICEE 2007 

extra iterations also imply extra work.  In both models, the 
amount and quality of documentation is expected to be equal. 
Because the project is still a study module, the development 
cycle ends after software delivery and system deployment.  

Project groups are assembled using information from 
course registrations. Students answer several questions in a 
registration form ranging from their preferred project topics 
to their interests in software engineering. The questions are 
kept simple to make the enrollment process smooth. As a 
result, the groups are highly heterogeneous. Some 
participants may be beginners in project work while some 
might be experts.  

The students get the required theoretical knowledge 
from previous courses and in some cases from work 
experience as well. The project itself is a practical course. 
Although each group has an instructor who is an expert on 
software engineering, it is the students’ contribution that 
matters. 

The customers have a real need for the solution systems 
to be developed during the projects. There are no predefined 
standard topics for the projects although some topics may 
accidentally resemble others. A typical customer is a 
researcher, a teacher, an administrative person, or even 
someone from outside the Department. 

PARALLEL PROJECT BACKGROUND  

We started our parallel team projects in the spring semester 
2004. Since the software engineering project is mandatory 
for all our students, we wanted to let as many students as 
possible to participate in a project they were most interested 
in. Most of our project teams have individual work topics, as 
there are more available topics than teams. Since the topics 
come from real customers, some of them may gather more 
popularity among students than others. 

Several teams from the same problem scope give us 
more freedom when selecting students to teams.  For 
instance, when students sign in to the course, we ask about 
their working habits. We can use this information to create 
teams that have similar schedules. 

Parallel projects have the same problem description and 
the same stakeholders. The teams themselves are 
independent of each other and are not supposed to be in 
contact with each other. However, it is hard to ensure that 
students do not communicate with each other if they know 
each other well.  

The parallel project setting gives us a chance to conduct 
controlled experiments using the project teams. We may 
allocate students to parallel teams based on some research 
criteria, such as gender or age. On the other hand, we may 
instruct one of the teams to use different techniques or 
processes while other parallel teams act as control groups.  
One unfortunate disadvantage of the parallel projects is that 
even with good teams only one final product is selected for 
future development.  While we do not tell the students which 
team was better, they can easily guess it from customer 
satisfaction and future development plans. Yet several teams 
have reported that the other team in a parallel project did not 
affect their work at all. 
 

PARALLEL PROJECTS  

Our first parallel project semester was also the most 
productive one when counting the number of parallel 
projects.  We had three regular parallel projects where two 
teams worked on the same problem: a project for science 
magazine referees, a project of a sea eagle observation 
management system, and a project of a machine language 
simulator.   Next to these, we had a cooperated project with 
the University of Petrozavodsk, Russia, where two teams 
worked separately on different issues of the same software 
problem at different geographical locations [9]. 

In the summer semester 2004, we had a parallel project 
about an office room management system.  Unfortunately 
also in the summer semester 2004, our department moved to 
our current location and due to this we had only short 
projects that summer.  In the short projects the participants 
were asked to work for 30 hours a week.  This turned out to 
be too much.  While the total hours of the summer teams 
were close to 240 hours, the tight schedule did not allow the 
project participants to have time to process their ideas.  As a 
result, the summer projects had severe difficulties with 
schedule and software functionality. 

In the autumn semester 2004, we had a parallel project 
of a taxi system simulator.  This parallel project went well, 
but unfortunately we do not have statistics left about it.  At 
that time, we were still in the middle of our moving and 
hence not all our systems were fully functional. 

In the spring semester 2005, we had a parallel project of 
a participating student profiler system. This was an 
interesting project because its customers looked at the 
problem from different angles and the teams also had very 
different types of solutions. 

In the summer semester 2005, we had two parallel 
projects: a project of a generic drawing application and a 
project of an assistant teacher meeting scheduler.  This 
semester we got heavy variation in project lengths and 
quality.  Neither parallel project was a success, but we 
learned valuable lessons about team structure and customer 
participation from both of them. 

Our latest finished parallel project was in the autumn 
semester 2005 about a room reservation system for a student 
organization. This project was a success.  It was also a part 
of our experiment of female-only software engineering 
project teams [6]. 

After the autumn semester 2005, we had 1.5 years 
without parallel projects. Finally, in the ongoing semester 
(spring, 2007) we have a parallel project about a meeting 
reservation system for teacher tutors.  Since the project is not 
finished yet, we do not include it in this summary. 

 So far we have had total ten parallel projects, eight of 
which are listed in this paper.  Of those projects, we have 
used three in empirical software engineering research: the 
sea eagle observation management system project, the data 
communication protocol through animation project, and the 
room reservation system for a student organization project.  
Nevertheless the other parallel projects have been useful also 
from the education research point of view.  While not all our 
parallel projects had research interests, they still have offered 



Coimbra, Portugal September 3 – 7, 2007 
International Conference on Engineering Education – ICEE 2007 

us many valuable lessons.  Thus, it is appropriate to 
summarize the projects here. 

I Nordic Journal of Computing referee system  

The Nordic Journal of Computing (NJC) science magazine is 
published in our University.  In the spring semester 2004, we 
had a project where the managers of the magazine wanted to 
have an article evaluation system for anonymous referees.  
The system kept track of received articles, referees, 
referenced articles, referee comments, and published articles, 
among other things.  As such it was specified to be a 
complete article control system for a small or medium 
magazine using anonymous referees. 

The parallel project had two teams: NJC1 and NJC2. 
The members of NJC1 were selected to have experience in 
user interface design and digital media courses.  The 
members of NJC2 were not as experienced in that field, but 
also some of them had some user interface and digital media 
background. While we were interested to see whether a user 
interface background would affect the result, we did not have 
a real controlled experiment due to the user interface skills of 
the NJC2 members. 

Both teams created good software on schedule.  We 
noticed that the NJC1 team indeed created a product that was 
more intuitive and easier to use than the NJC2 product.  
However, this analysis was based on our subjective opinions.  
From a user interface research point of view, the differences 
were small.  It is also not clear whether the students’ 
background affected the result or was it because the teaching 
assistant of NJC1 had strong interest in user interfaces. 

Next to the user interface issues, we were interested to 
see how well our new parallel project paradigm would work. 
In this project, it worked very well.  Both teams had the same 
problem scope but already starting from the requirements 
analysis they worked separately from each other.  Also the 
customers of both teams were able to keep the teams 
separate. We got two products that had the same background 
but which looked and felt different from each other. 

II Sea eagle observation management system 

The sea eagle observation management system is a member 
of a large product family that has been under development in 
our software engineering projects for the last 15 years.  This 
time the teams were asked to create software for sea eagle 
observers.  The software was specified to allow observers to 
input data to the system from forms that they filled on the 
field near sea eagle nests.  The system should also output 
various reports about input data. 

In the spring semester 2004, we started a case study 
where we would have a female-only and a male-only team 
working on a parallel project.  We made the case study in 
two semesters and in the spring semester 2004 we chose the 
sea eagle observation management system to be the first 
project to observe. 

This parallel project had two teams: Kotkat (Eagles in 
English) with six female students and Hali2 (Hug2 in 
English) with five male students.  Members of both teams 
were selected according to their preferences but since we do 
not get that many women to our projects, we basically had to 

gather all possible female participants that had at least a 
small interest to this kind of a project. 

In this project, both teams had the same two customers.  
This was not a good idea since the customers often argued 
with each other about issues in front of the students.  As a 
result, the students were confused of what they should do 
and whose word to follow.  Fortunately, the project that had 
a rocky start ended relatively well.  The members of the 
female-only team were especially happy with the project and 
the members of the male-only team did not complain either. 

III Machine language simulator 

The machine language simulator was designed for our course 
about computer organization.  It was specified to emulate a 
virtual processor with its own machine language, registers, 
small memory, stack, and I/O-operations.  The system would 
execute students’ machine language code and show the 
results in registers and memory. 

In this project, we had two teams: Koski (Rapids in 
English, it is also an acronym of the Finnish word 
“Konekielisimulaattori” – a machine language simulator) and 
Malan (an acronym from a Machine language simulator). 
The participants of the teams were randomly selected from 
interested students.  We did not set a research goal to the 
teams. 

Although this parallel project did not have a research 
theme, it turned out to be an interesting one.  In the project, 
the customer did not completely distinguish the teams from 
each other.  At certain times, the customer even encouraged 
the teams to co-operate.  This confused the teams and no 
doubt affected the results.  It also caused the resulting 
products to noticeably resemble each other. 

IV Student registration profiler 

Our next parallel project was in the spring semester 2005.  
This time the teams were asked to create student registration 
profiler software.  Such software would allow the 
supervisors of courses with small group work to decide 
whether a student would be allowed to attend the course, and 
if yes, which small group he or she would participate.  For 
instance, we use a later version of this software in our 
software engineering group work when we select students to 
project teams. 

In this parallel project, we had two teams.  The teams 
were Ilpo (a male Finnish name) and Proffa (a Finnish slang 
word for a professor).  Ilpo had five students and Proffa six. 
Both teams had their own customer and, fortunately for us, 
both customers had a very different idea of what 
functionality the resulting software would have and what 
kind of a user interface it would have. 

We chose the members of the teams randomly.  Both 
teams were about equal in size and skills.  The teams did not 
have much contact with each other and the customers were 
able to keep the teams separate from each other. The biggest 
differences were in requirements and it clearly affected the 
products. 
As a result of the problem and customer preferences, we got 
two pieces of software that answered the original problem 
definition but that were otherwise quite different from each 



Coimbra, Portugal September 3 – 7, 2007 
International Conference on Engineering Education – ICEE 2007 

other.  The teams had chosen completely different 
approaches which showed well in the final products. 

V Generic drawing application 

In the summer semester 2005, we had two parallel projects.  
The first one was a generic drawing application.  The 
application requirements stated that the application has to 
support different types of modeling languages.  It was 
defined to be a core framework for a family of different 
modeling software. 

The summer projects did not manage to create suitable 
core software.  We had teams Canvas (the same in English) 
and Oops (the same in English). The Oops team at least tried 
to create good software and their resulting product was later 
expanded in a new single team software engineering project.  
The Canvas project, on the other hand, failed miserably. 

While the Canvas project was a failure from a product 
point of view, we learned a valuable lesson from it.  First, the 
size of the Canvas team eventually became too small.  It had 
originally five participants, but two of them cancelled the 
project.  Second, the project had several students whose 
mother tongue was neither Finnish nor English.  A language 
barrier, early cancellations, and general lack of interest to the 
project were the main reasons for the failure of this project.  
None of the issues alone would have destroyed the project, 
but together they were too much. 

VI Assistant teacher meeting scheduler 

Also in the summer semester 2005, we had a parallel project 
of an assistant teacher meeting scheduler.  The customer 
wanted software that assistant teachers could use in 
laboratory courses.  The purpose of the software was to 
allow students to select from a set of predefined time slots 
when they would like to meet their teaching assistant. 

In this project, we had teams Aija (a Finnish female 
name) and Sahara (the desert in North Africa).  The Aija 
team had five members and the Sahara team had four 
members.  We selected the members of the teams from 
emails because originally we had too few project proposals 
and we asked one of our colleagues to create a new proposal.  
The new proposal turned out to be very interesting to the 
students.  We found enough volunteers for two parallel 
teams. 

This project had some very good characteristics and 
some very bad ones. A positive thing of the project was that 
the customer was able to keep the teams separate, and the 
teams had very strong ambition to finish the project. A 
negative thing of the project was that the customer had 
unrealistic requirements which the teams did not prioritize 
well.  As a result, especially members in the Aija team 
worked extra hours in order to finish the project on schedule.  

VII Room reservation system for a students’ association 

We concluded our spring semester 2004 female-only team 
experiment with a new parallel team experiment in the 
autumn semester 2005.  Again, we had a female-only team 
and a male-only team, but unlike the previous time, this time 
we had two customers who had their own teams.  This time 
the project proposal specified software that members of a 

students’ association could use to reserve meeting rooms, 
sauna, and other common facilities of the association. 

This time we had teams Potta (a Finnish slang name for 
the students’ association that wanted the software – the word 
is also a potty in Finnish) and Innova (comes from 
innovation).  The Potta team had five female students and the 
Innova team had six male students.  We wanted the Potta 
team to have six female students but one student cancelled 
her participation before the project had started. 

The idea of having separate customers worked well.  
This time the teams were totally independent of each other.  
The results were interesting, too.  Both teams did a very 
good job and the quality of both products was about equal. 

After the teams had finished, we also finished our case 
study about female-only software engineering teams.  We 
found out that female-only teams work equally well as male-
only or mixed teams, but perhaps the members of female-
only teams are more social and their working habits are 
somewhat different. We have published a complete 
description of the case study in a separate paper [6]. 

VIII Data Communication Protocol through Animation 

While in all the previous projects the teams worked (or at 
least tried to work) separately from each other, our data 
communication protocol through animation project was 
different.  This time both teams worked on different aspects 
of the same problem.  The interesting part of the experiment 
was that the teams were geographically distributed. 

The team at the University of Helsinki (Dacopan UH) 
had three Finnish students, two Spaniards, and one Finnish-
American.  The team at the University of Petrozavodsk 
(Dacopan UP) had five Russian students.  As far as we 
know, this is the most international geographically 
distributed student team project reported in literature.  
However, although Dacopan UH team did not have a 
common language, it did not ruin the project.  Instead, multi-
language students gave new views to the problem and its 
solutions. 

In the project, we considered it wise to start the project 
with a common kick-off period.  This was arranged in 
Helsinki, where both teams worked together with the 
customer.  In three weeks, the teams and the customers found 
most of the requirements of the software.  A second joint 
working period was arranged towards the end of the project 
in Petrozavodsk for a period of ten days.  The period was 
used for joint integration testing and software demonstration.  
However, part of the scheduled time was actually used for 
coding since the project was a little late. 

Our experience with the Dacopan project was positive.  
In spite of the differences in team members’ backgrounds 
and little of face-to-face communication, the students in both 
teams produced a high-quality product within the given 
schedule.  The feedback from the students was positive and 
they all agreed that these types of projects are useful.  The 
Dacopan project participated later in the Microsoft 
technologies in software engineering and software 
development contents where it won the first place. Our cross-
cultural software engineering project experiment is fully 
described in our report [8] and it is summarized in a later 
conference article [9].  



Coimbra, Portugal September 3 – 7, 2007 
International Conference on Engineering Education – ICEE 2007 

LESSONS LEARNED 

Most of our parallel projects have been educational 
successes.  We have noticed that a good parallel project 
where two or more teams work on the same problem 
definition has the following characteristics: 

• All teams are about equal in size and skills. 
• All teams have their own customer and the 

customers of the teams do not know about the 
advances of the other team. 

• The original problem definition is the same with all 
teams but the customers of the teams have slightly 
different preferences: for instance they may 
represent different stakeholders or have different 
interests in human computer interface issues. 

• The teams are neither asked to compete with each 
other nor do they get the impression that they 
should do it. 

• The teams do not need any information from the 
other teams.  All needed information comes from 
the customer of the team. 

• If the teams have the same customer, the customer 
will not let his or her biases to affect his or her 
relationship to the teams. 

It is important that the teams are about equal in size and 
skills.  If the sizes of the teams are very different, as 
happened in our Canvas project, the created products are not 
comparable.  Also since both teams are aware of each other’s 
work – we have noticed that this is unavoidable – the 
knowledge of smaller available resources often makes the 
members of the smaller team to work too hard or give up 
project work almost completely. 

Unfortunately, it is not possible to completely avoid 
teams of different sizes.  In our case, in the Canvas project 
we had five participants.  Unfortunately one student 
cancelled the course very early and another student cancelled 
it after about one third of the project was over.  The other 
three were never very interested in the team work and after 
the cancellations their work motivation dropped more.  The 
result of the project was barely acceptable. 

The equal skill factor is important as well, but it appears 
that it is not as important as the size factor.  We have had 
teams where the participants have had quite limited skills 
and yet they have got reasonably good results.  We believe 
that the feeling that the team members work together for a 
joint goal and can trust each other is far more important than 
individual skills.  We have noticed that the best chances for 
this to happen are when a team has 5-6 students.   Members 
of smaller teams may try too hard or too little. Members of 
larger teams seem to somewhat miss the feeling of being a 
uniform team. 

We have noticed that the best way to jeopardize a 
parallel project is to let the teams have the same customer.  
Few customers are able to completely distinguish their 
opinions and knowledge of other teams.  This extra 
knowledge percolates in team meetings especially in the 
requirements analysis phase.  It also shows in the 
relationships between the customer and the teams since most 
customers soon find out which team is their favorite one.  

On the other hand, the best way to have a good parallel 
project is to let the teams have customers who have 
individual preferences within the problem scope.  
Unfortunately, we have had only three such projects so far: 
the Nordic Journal of Computing referee system project, the 
student registration profiler project, and the room reservation 
system project. 

One of the biggest issues in our parallel projects is that 
parallel teams tend to compete with each other.  This is 
especially true when we have an experiment where teams 
have easily recognizable differences.  For instance, in our 
female-team study, both times the members of both teams of 
course immediately realized that team members were not 
randomly selected.  This kind of a competition situation is 
bad for education, research, and team work.  When teams 
compete with each other, they tend to forget the basics of 
software engineering. They want to have as much 
functionality in a limited time as possible. As a result, quite 
often they create enormous software that is badly designed 
and tested. 

While it is not possible to forbid students from 
competing with each other, the customers should be wise 
enough not to let their feelings and preferences affect team 
work.  Alas, this is not always the case.  We have had 
customers who were not able to keep their teams separate.  In 
the weakest form, the customer lets his or her knowledge of 
one team’s work affect the dialogue with the other team.  For 
instance, quite often one team finds out an elegant solution to 
some functionality issue of the developed software.  If their 
customer is not careful, he or she may easily hint the other 
team about the solution.  In the strongest form, the customer 
forces all teams to use a solution that is introduced by one of 
the teams. 

A summary of the parallel projects as listed in this paper 
is in Table I.  The table lists the team names, the number of 
students of a team, the total hours, the minimum working 
hours, the maximum working hours, and the average 
working hours.  The students of the projects account their 
private working hours and tasks into our metrics system.  
The hours spent in a project do not directly affect grading 
and we have told this to the students as well. As such, we 
trust that the listed hours are fairly realistic with natural 
variation. 

As we can see from Table I, the average working hours 
are about the same in all projects.  The only clear difference 
is in project Canvas.  That project was a most unfortunate 
one and it also shows in its hours. Next to the Canvas 
project, we have fairly equal projects in average hours.  The 
largest differences are in the Aija project (310.2 hours) and 
Hali2 project (200.7 hours).  The Aija project suffered from 
unrealistic requirements, as listed earlier.  The low hours of 
the Hali2 project are somewhat a mystery to us.  The team 
did a good job so low hours do not show that much in 
quality.  The most probable reason for their low hours is that 
they did not really keep track of all their working hours.  
Sometimes our students consider this kind of work waste of 
time since it does not directly affect course grades. 

While the minimum hours and maximum hours vary a 
formidable amount from project to project, it is not a serious 
issue.  When 5-6 students join a team without prior 



Coimbra, Portugal September 3 – 7, 2007 
International Conference on Engineering Education – ICEE 2007 

knowledge of each other, it is not a surprise that someone 
will do as little as possible in the team.  As long as he or she 
does not encourage others to slip their duties, it does not 
affect the team that much. 
 

TABLE I 
PARALLEL PROJECT STATISTICS 

 
Name # Hrs tot. Hrs min Hrs max Hrs avg 

NJC1 6 1488 218 292 248,0 
NJC2 6 1541 247 270 256,8 
Kotkat 6 1551 245 274 258,5 
Hali2 6 1204 175 242 200,7 
Koski 6 1444 224 260 240,7 
Malan 5 1120 144 265 224,0 
Ilpo 6 1429 190 269 238,2 
Proffa 5 1183 224 253 236,5 
Canvas 3 362 113 128 120,5 
Oops 6 1662 243 313 277,0 
Aija 5 1551 229 367 310,2 
Sahara 4 1093 222 324 273,3 
Potta 5 1372 246 298 274,3 
Innova 6 1526 193 249 254,3 
Dacopan UH 6 1787 257 332 297,8 
Dacopan UP 5 1211 167 296 242,2 

 
A graphical summary of the Table I data is in Figure 1.  

The figure shows the minimum, average, and maximum 
hours of each team in each parallel project as listed in the 
previous section. The closer the different dots of a project 
are, the more equally the members of that team have worked.  
The closer the dots are to the 240-hour line, the closer the 
project has been of the recommended size.  Again, the figure 
shows that most teams have had about the right project effort 
and that all members of a team have worked about as much.   

 

80

240

400

I                  II                III                IV               V                 VI                VII              VIII

Hours min

Hours avg

Hours max

 
 

FIGURE 1 
PARALLEL PROJECT HOURS. 

 

CONCLUSION  

Our experiences with parallel software engineering student 
projects have mostly been positive.  Most teams have not 
complained about the artificial situation of two parallel 

teams.  Usually at the beginning of the project teams think 
that they must compete with each other or at least find out 
what the other team is doing, but when time passes and 
software requirements are gathered teams seem to forget that 
the other team existed.   

The best of our parallel projects have been good for 
students, customers, and researchers.  We have had several 
such projects.  A common thing to the projects is that their 
participants have really wanted to join the teams, each team 
has had its own customer, and teams have been equal in size 
and strength.  We think that these three issues are almost 
mandatory for a successful parallel project. 

In our three years of parallel projects, we have learned 
that such projects are a good research resource.  Having good 
experiment conditions with parallel projects is in fact a 
smaller problem than finding out a good research topic to 
experiment with a parallel project.  We expect to have 
several parallel project experiments in the future.  We hope 
that this paper will encourage other schools to try them as 
well. 

ACKNOWLEDGMENT  

This work was supported by the University of Helsinki, 
Department of Computer Science. We wish to thank Prof. 
Inkeri Verkamo and two anonymous reviewers for their 
valuable comments and suggestions. 

REFERENCES 

[1] Alfonso, M. I. and Mora, F., “Learning software engineering with 
group work”, Proceedings of the 16th Conference on Software 
Engineering Education & Training, 2003 (SEE&T 2003), March 2003, 
pp. 309 – 316. 

[2] Brazier, P., Villalobos, M. C., Taylor, M. B., Basu, K. and Sircar, T., 
“A Cross-disciplinary Software Engineering Project Implemented as a 
Web Service”, Proceedings of the International Conference on 
Engineering Education 2006 (ICEE’06), July 2006 (in CD-ROM). 

[3] Coppit D. and Haddox-Schatz, J. M., “Large team projects in software 
engineering courses”, ACM SIGCSE Bulletin, 37, 1, January 2005, pp. 
137 – 141. 

[4] Dawson, R., “Twenty Dirty Tricks to Train Software Engineers”, 
Proceedings of the 2000 International Conference on Software 
Engineering, June 2000, pp. 209 – 218. 

[5] Pletch, A. and Agajanian, A., “A software engineering project that 
looks like the real world”, Journal of Computing Sciences in Colleges, 
22, 6, June 2007, pp. 92 – 99. 

[6] Taina, J., “Female-only Student Software Engineering Teams – a Case 
Study”, Proceedings of the International Conference on Engineering 
Education 2006 (ICEE’06), July 2006 (in CD-ROM). 

[7] Tichy, W. F., “Hints for Reviewing Empirical Work in Software 
Engineering”, Empirical Software Engineering, 6, 4, December 2000, 
pp. 309 – 312. 

[8] Verkamo, A. I., Taina, J., Bogoyavlenskiy, Y., Korzun, D.  and 
Tuohiniemi, T., “Experience in a distributed cross-cultural student 
software project”, Report C-2004-65, University of Helsinki, 
Department of Computer Science, 2004. 

[9] Verkamo, A. I., Taina, J., Bogoyavlenskiy, Y., Korzun, D.  and 
Tuohiniemi, T., “Distributed Cross-cultural Student Software Project – 
a Case Study”, Proceedings of the 18th Conference on Software 
Engineering Education & Training, 2005  (SEE&T 2005, April 2005, 
pp. 207 – 214. 


