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Abstract- Matrix Theory has long been applied to many
branches of engineering. However, numerical difficllies
have limited access to students, especially at the
elementary level. This limitation has partially bea
removed with the development of canned software and
modern scientific calculators which operate matrics.
However, the approach with matrices ignores this ath
still follows traditional ways. This work presents an
alternative view of matrix applications to electric circuit
analysis, linking matrices and equations with circt
solutions, with heavy emphasis on appropriate setig of
equations and interpretation of results. As a redyj a
more effective use is made to obtain applications iareas
that usually require more work or symbolic analysis
such as when dealing with symbolic sources, equiesait
port representations, two ports, etc.

Index Terms — Matrix analysis, Circuit Theory, Systems
education

INTRODUCTION

Matrices have been used in circuit analysis foorggltime
[1-3]. Yet, matrices have been more useful for ‘@tbed”
courses or for computed aided oriented books [4P&pular
introductory circuit books usually make limited usiethem
when coming to the mathematical analysis of theudis.
The main emphasis is either for the solution ofea af
equations using Cramer’s or determinants [6, 7nainly
for preparing the equations for use in Matlab® [8pttling
[9] focuses more on the use of matrices, but eniphas
definitely on Matlab programming.

Almost all teachers would agree that the use ofiosst
in the introductory courses, without more than ecptculus
level treatment, would focus in the solution of thet of
linear equations, and this is in fact how matriaes used at
this level and will certainly be most of the tiniroperties of
matrices are also linked with some properties ofuits,
although this relationship is seldom considered.

The main problem with matrices in introductory czas

for home study such as the program availabilitye th
computer, and so on.

On the other side, modern graphical calculatoré s
the TI-89™, HP49™ and many others have matrix
operations included, so students count now with a
computation capacity allowing them to focus on $b&ution
of the equations as easily as with the use of esipen
software and laptops.

However, the power of such tools can only be
appreciated at elementary courses if we reconsidemway
matrices are used in circuit analysis. True, thénnuge of
matrices at this level will still be the solutiof equations.
Yet, the equations have more power than usuallyghb
when properly considered and the solutions adelyuate
interpreted. Most texts use matrices as an inteiatestbol in
a solution process which becomes invisible at tlwmanmt
the circuit includes elements such as symbolic cemiror
multiple sources as functions of time in resistireuits, etc.

In these situations, the student without accessatoulators
or programs with symbolic manipulation power becenast
for circuits with a little more complexity.

The purpose of this work is to look at elementagtnr
theory, or better, at the use of matrices to selgaations,
under a renewed perspective, which puts at thérebearly
classes in circuits the tools of matrices in a faramd useful
way. For all practical purposes, the approach givere is
extendable to any linear system, mechanical, étattetc.

No new theorem or theory is introduced, only an
approach from a new perspective. Among featurethisf
approach attractive for using matrices early weroantion:

e There is no need to consider complicated notations
such as sub matrices and operations with them1[3,4

e Only numerical operations are involved, so there is
no need for programs or calculators with symbolic
capabilities.

* There is a direct and immediate connection between
theoretical concepts in linear circuits and howaguns are
set up and solutions interpreted.

The theory and examples presented in this paper are
limited to resistive circuits due to space limiba$. The

is of numerical nature since hand and pencil amlys method and numerical procedures are of course éxiéa to

becomes usually more complicated, except for siropkes;
Cramer’s rule is impractical for more than threeiaopns.
Software

the phasor domain. Other topics that stem fromxa@nsion
of this approach are left outside this paper. Tékirg of

tools such as Matlab®, Mathematica® orequations directly using characteristics of equetits not

MathCad® alleviate, but do not necessarily solve th considered, since the rules are already popularcandbe

problem, since there are still practical problerssogiated
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looked elsewhere, like in [7, p. 90, p. 105]
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This approach does not pretend to substitute, but t
complement, other methods, including hand and pencor else in the form

procedures, too useful in the development of iidnijt or
more convenient under different circumstances.

MATHEMATICAL BACKGROUND

A set of linear mathematical equations is written a

a 1X tayoXo + ...+t ynXnp :b_l.
agqX1 tagoXo + ...+ axnXp :b2

1)
amXq +ap2Xo + ...+ annXp =bn
In matrix form, this can be written as
Ax=b 2)

where

aj] a2 aln X1 by
A=| 821 822 an | . _[*2| andp=|P2

anm  an2 ann Xn bn

Here, the coefficient matriA and the vectob are assumed
to be known, withA being invertible. The solution for in
(2) is then found with

x=A"b
matrices to solve the set (1). Now, our new foomssginto a
common form for the set of equations in circuiplagations,

namely, when the right side elements of (1) arlaat linear
combinations themselves. That is, the form

a1Xg tagoXo + ...t ainXy =b11z0 +byozo +--- +bymzm
apixq +agoXp + ...+ agnXy =bo1zg +bopzp +--- +bymzy

an1Xq +anaX2 + ...+ apnXn =bpizg +bppzp +--- +bymzm

(4)

Although the main difference between (4) and (that

3)

This result can be found in any standard text using

Ax=Bz (6)
whereB is the matrix with thé vectors as columns, arxd
the vector of the parametezs

With the notation of (5) or (6), the solution fdretset of
equations becomes

X :A_1b121+A_1b222 +~--+A_1bmzrn =A"Bz (7)

The form of system (4) is very common in linear
circuits; and for that matter, in any linear systeBome
examples will illustrate the use of it later. Fbetmoment,
an important consequence of (7) is the fact thatsthlution
for any variable in (4) is of the form

Xi =kinz1 +Ki2zp +---+KimZm 8
where ki, is the i-th element of the vectoA™b, or the
element in thé-th row anch-th column ofA™B.

Notice that from the algorithmic point of view, the
solution of system (4) is reduced to numerical iratr

multiplication and and appropriate interpretatiédnsimple
example will illustrate this remark

Example 1 Solve the following system for variables
andy:

5x+12y =8cos(3t)+ 7674
3x+7y=-2cos(3t)+ 5e~2

Identifying z; =cos@@) and z» =e_2t, the solution
can be found, according to (7), with the operation

5 1218 7] _[-80 11
3 7 -2 5 34 -
This numerical result can now be interpreted as
X =-80cos(3t) +1%e™2 and y =34cos(3t) ~4e™2 End

The example, although simple enough to be worked by
hand, illustrates the procedure for any order amnetends to
bring to the attention two points: first, by assdtitig the
right hand side to a matrix and not to a vectorreduce the
operations to a numerical procedure not involvidg t

now the right hand side of each equation is a tineaparametett or the cosine or exponential functions; second,
combination of thez's, and thus no particular interest the final result as well as the method statemeqtires

seems to arise, very often theg's are parameters of

interest, such as other unknowns, special function
constants, etc. In this case, it is useful to discthe
equations under other perspective. Using columiy"

vectorsbi=[b]j by; bni]T i=1,2..,m, (4) can

now be expressed as
Ax=bqz1 +---bmzm

®)
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interpretation of computer (calculator) resultsstis aligned

g/vith the skills ABET lists for engineering prograhs].

The coefficients, in (8) can be interpreted in a suitable
ay for applications and for use in even lower tech
calculators, which may not necessarily have matrix
operations but just a utility for solving linear wgions of
form (1):
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Thecoefficiert k;, in formula(8)is thesolution
for x; in system(4) for thespeciaktasewhenz, =1| (9)
andzy, =0fork #h

FIGURE 1 CIRCUIT FOR EXAMPLE 2

We see that equations (10)-(12) are of the form \(vi¢
can therefore write the matrix form (Fx=Bz

1

A first consequence of (9) is that system (4) cen b|1+L1 L4+141 15, 1.1 4
solved using systems of the form (&) times, each one with | * 20 40 1 8 1 81 1 4 2 B
the elements of the appropriate vector Second, (9) ) 3 +§) V3=l 0 1 |
naturally leads us to the basic properties of lingathat is, 1 5.1 -5 |Vy 0 0 2
the homogeneity and additivity properties. 3 3

INTERPRETING THE MATHEMATICAL RESULTS FOR
APPLICATIONS

The form of system (4) is the general form of euurest with

respect to voltages and currents. This follows fittwn very
fact that (a) Kirchhoff's equations are linear iature — and
hence, linear also for non linear networks, - dnydtljat the
element equations are linear by definition. Thersesi may
be of any kind, symbolic or dependent of time,asafs they
do not introduce non linear relationships for vodita and/or
currents. This feature, together with interpretat(®), will

allow us to work with symbolic sources, time-depemd
sources, superposition, network

illustrate these remarks using examples.
I. Symbolic Sources, Superposition and functions of time.

Example 2 (symbolic sources)For the circuit of figure 1,
solve for the node potentials in terms the soukceand 2.

We will use the common concept of supernode [7fo8]

functions and other
characteristics, and many more situations. It bélleasier to

In this expression the operations in the elemeatgeh
not been realized to illustrate the fact that, whesing
calculators, the operations do not need to be ezhraut
previously. We can now work the operation

-1
i a3
8 8 80
1 2-1 -2 o 0
0.805 8.123
0948 -4.713
0.862 2.989

The numericatesult is next interpreted as

V1=0.805F + 8.123 b,
V4=0.8625 + 2.989 p

V3=0.9485 - 4.713 b and

End of Example

Example 2 can be similarly worked for time depernden

nodes 1 and 3, taking equations for nodes 4 and theources the typds;=kf(t) and E;=mg(t). In this case, the
"supernode” (1,3) and add the dependent sourcetiegqua constantk andg are introduced as factors in the respective

The reader may check the following equations, wiren
coefficient terms were omitted for simplicity:

Supernode (1,3):

Node 4: -£V3 + (E +i)\/4 =12 (11)
8 8 80
5 5
Dependent sourcéf] + 5 -1V3 —:—3V4 =0 (12)
(40/3)i, "
+ 1 © (9—
@ 4Q 20 @ 80 @
—/\W —/ W\ vW—
| 5
20Q % =] §4OQ égOQ
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columns inB and the time functions then added when results
are interpreted, as it was illustrated in Example 1

Example 2 also illustrates the superposition ppleci
from the very set up of the equations. In fact, cae see
that the first column of the matriB of example 2 is the
situation in whichl2=0. This can be double checked by
open-circuiting the source and writing again theiagpns.
Similarly, the second column corresponds to the €4s-0,
which can be verified short-circuiting node 2 tognd and
writing the equations. Consequently, the first aetond
columns of the resulting matrix show the individual
contributions of each source. Thus, when individual
contributions need to be highlighted, write a saf@column
for the sources instead of adding all of them ia term.

Interestingly enough, this also illustrates the taat the
matrix coefficient may written after turning off lathe
independent source. This has important consequeirces
transformations and applications of circuits.

1. Network Functions

Equation (8) and interpretation (9) can be directiated to
transfer and port functions. If thels in (4) are voltage or
current input magnitudes, ang is a response voltage or
current, then, according to (% can be interpreted as the
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network function (either transfer or port, depergdon the
variables involved)

X
kpj =1

i (13)

ZI Zm :0, m#i

Notice that, mathematically, not all variables 4) Geed
to be responses. The network function for only onpait is
worked similarly, making the input value 1 and mpieting

1.1 -1 -1
K 2k 1 2k Vin| |1
1 1,1,1.1 _1_1 -
K 1k 2k 4k Bk 4K Bk V2 |=|0
_1 ~1_1 1 ,1,1,1|Va 0
2K 2k Bk 10k 2k 4k " 5k

The solution for this equation yields

v=[2365.4 1634.6
la=v(2)/2000= 0.817 and

1826.9]T, Vb{2)-v(3)=-192.3,
Ib=Vb/5000 = -0.038. These

the results accordingly. Again, let us use an examp regylts are interpreted directly as

providing an ample illustration.

Example 3. For the sub circuit of Fig. 2, find the input R, =—

resistance Vin/lin, as well as the transfer funtsicusing
nodal equations.

lin ’ lin ' lin '|in ’Vin ’Vin ’Vin ’Vin

To set up the equations, we prepare the circuibduicing an
“input” lin=1A, assign nodes and ground as showifrign 3.

With this setting, Vin=\, Va=V, and Vb=\4V; ,
la=V2/2000 and Ib=Vb/5000.
2kQ
VWA
4kQ
VWA
lin 1kQ b, vy -
» AW = SyyySm——
+ laws b 5kQ <
Vi Va 7kQ
| 2kQ 3KO
- VWA
FIGURE 2 CIRCUIT FOR EXAMPLE 3
2kQ
VWA
4kQ
VWA
@ 1kQ @ | + Vb _ @
VWA h VWA
< 5 kQ <
1A 2kQ 7kQ
3kQ
T VWA

FIGURE 3 CIRCUIT PREPARED FOR ANALYSIS

To solve for the required functions, from (9) ari8)( we
conclude that these values will be numerically éqashe
functions Rin, Va/lin, Vb/lin, la/lin and Ib/lin. Diding all
the transfer functions by Vin will yield then thest of the
functions. Setting up the equations we get

Coimbra, Portugal

Vin =2,3654Q;V_a =1,6346Q; V—b=—192.3Q;
lin lin lin

la =0.817: Yo — 00138

lin in

These values are now divided by Vi), already available
from the resulting vector, to yield

Va _ 16346 _ o) Vb _ 71923 _ -0.0813

Vin 23654 Vin 23654

la _ 0817 S=3455 8, I_b:M8= -16.26 1S
Vin 23654 Vin 23654

End of Example

The mathematics of this example is more traditiohat the
emphasis on the appropriate interpretation andotisesults
after (9) illustrates the point. Moreover, this exde will
serve easily for introducing the next two subsexgio

I11. Thevenin equivalent circuit

Thevenin's theorem states that any linear sub itirsu
equivalent to a voltage sourd#h in series with a resistance
Rth. The voltage source is the open circuit voltagavben
the terminals and the resistance is the equivaksistance
seen at the port. This interpretation is the comgnased for
finding the equivalent representation, and it ivised to
continue doing it for simple circuits or for pedggmal
reasons. However, when the circuit becomes complex
time is important, setting up the equations inftren (4) can
be of help.

For that purpose, we add a dummy symbolical current
source kg at the port, as shown in Fig. 4a. Whege0, the
source behaves as an open circuit, so the voltagess it
will be Vy, (Fig. 4b). When all the sources in the port ate s
to zero, the source will see the equivalent reststdFig. 4c)
S0 Vag=Rules: Following (8) and interpretation (9), we can
therefore say that the solution fogavin Fig. 4a will be

VaB =Vih + Rl test (14)
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& v
'_1— 10k M
FORTHN |y
A_E' Ttest 10k
 AMN— o
B 1k @) 300
(@ AL s Clivvl €
PORT H PORT N i < 20 <
A A | A : ! + 500 A
. —1 test 5k E1 & s
T v
Vin NS i 4B Lest 5 1
B B
) © FIGURE 6 SETTINGS FOR CIRCUIT OF FIG. 5
FIGURE 4 SETTINGS FOR FINDING THEVENIN'S EQUIVALENT To read the required result, remember that thé i
CIRCUIT USING A CURRENT SOURCE. corresponds to the voltage in the test source.dJglid) as

) ) ) ) reference, the column fored, the third one, yields the

Recall thatvth in (14) is not necessarily a number; it CanThevenin resistance, while the rest of the coluyiaki the
be a symbolic value itself or a combination asxareple 1 Theyenin voltage. Associating the numbers to thaksyic
or example 2. To enhance the interest of this remar 5)yes as it was done in example 1, we have
consider the following example.

. ) . Vih=0.873 g5 +29.225§ Riph =7.418K

Example 4. Find the Thevenin equivalent for the port of
Fig. 5, where the independent sources have symbalies.

The settings for the nodal equation are given o Bi
The matrix equation for this circuit is

End of Example
The Norton equivalent representation can be silpilar
worked out after the proper setting or the propgragions
are considered.

(1 4 1 _ -1 0
1000 2110000 N 1E31 L 1 Vi
~1500 1800" 5060" T6000" 7600 ~ 5000 Vo |= I1V. Two Ports.
0 1 1,1, 1 |v3
L 2000 300 500 2000 A two port is a subcircuit where four or three terats are
ﬁ) 0 1rg identified for connection to the outside world d®wn in
L _ 0 0| Ig Fig. 7 The variables identified with the two porte ahe
10000 g voltages and currents ;M;, V, and b.
350 O
Iy Iy I1 Iy
The application of the numerical operation yields EL 1” —» | <
V1. in v, Ty
Vi 0.873 29225 7418412 ] — | - 2
Vo |=|0861 32148 7160253 (a) (b)
V3 0645 174184 613736 FIGURE 7 TWO PORTS) FOUR TERMINAL, b) THREE TERMINAL
A two port without independent sources may be
characterized by a set of two port parameters [LO]find a
10k A given set of parameters, we exploit here the faat in (4)
2k the variablesz are any type of parameter of interest. With
J 10k | this in mind, the procedure can be described &svisl
1k 300 e Step 1: In each port introduce a symbolic source of
A - A%% any type, with voltage and current directions ie ttame
B 20, ¥ p; \ direction as the corresponding port variables..
? 5k = Q 500? C) 's « Step 2: Set up the equations as usual, includihg al
B the port variables (hence, in nodal equationsefample, do
FIGURES CIRCUIT FOR EXAMPLE 4 not forget to include the current in the voltagarse; in loop
equations, the voltage of a current source).
e Step 3: If necessary, manipulate the equationbeso t
“independent” variables appear in the right hawie si
e Step 4: Solve the equations. The submatrix formed
with the rows of the "dependent" port magnitudefngethe
port parameters.
Let us illustrate with an example for the ABCD
parameters, in which the equations are of the form
Coimbra, Portugal September 3 — 7, 2007
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Vil [A B[V, A B] _[-952E-3 -106E3
L] [Cc D]|-1, (15) C D| |-634E-6 -2857E-3
End of Example

with independent variables ,\and —} (note the sign) c
ONCLUSIONS

Ega.\rg'gle 5 Find the ABCD parameters for the two port ofA new approach has been adopted to work with theans
naturally arising in linear circuits, in which thight hand
side is usually a linear combination of sourcewvamables.
Iy + N | N With this approach, several advantages are obtaardng
150 m!, 0.03E @ which we can mention the easiness to work numerical
BoOSEE 10kQ
k!

w00 260 12 -

procedures where symbolic ones were necessaryehdfbis
feature is useful for students, both theoreticaind
% 110 practically, especially when no symbolic tools akilable.
This feature alone makes it attractive for usearlyestages,

when numerical complexities are of main concern.
Other advantages include the development of skilth
as interpretation of computer (in this case, calitu) results,
and knowing how equations relate directly to objes and

FIG. 8 TWO PORT FOR EXAMPLE 5

The setting for nodal analysis is shown in Fig. 9

o 300® 2502 10 ©) to properties of circuits. _
AA—e The approach also allows the development of sttaigh
+ algorithms for the solution of common applicatiospace
1.30 k4, Vy limitations have not allowed a complete presentataf
| + i many more possibilities, which are left furtheratdission.
1 l
Q) Vi
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Vi -952E-3 -1.06E3 [10] Palomera-Garcia, R. “Multipole and Multiport Anailys in Wiley
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1|_|-634E-6 -2857E-3 { 2} & Sons, Vol. 14, 1999, pp 1-25
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Vy -6.34E-3 -1.03E-3
from which we interpret
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