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Abstract - Matrix Theory has long been applied to many 
branches of engineering. However, numerical difficulties 
have limited access to students, especially at the 
elementary level. This limitation has partially been 
removed with the development of canned software and 
modern scientific calculators which operate matrices. 
However, the approach with matrices ignores this and 
still follows traditional ways. This work presents an 
alternative view of matrix applications to electric circuit 
analysis, linking matrices and equations with circuit 
solutions, with heavy emphasis on appropriate setting of 
equations and interpretation of results.  As a result, a 
more effective use is made to obtain applications in areas 
that usually require more work or symbolic analysis, 
such as when dealing with symbolic sources, equivalent 
port representations, two ports, etc. 
 
Index Terms – Matrix analysis, Circuit Theory, Systems 
education 

INTRODUCTION  

Matrices have been used in circuit analysis for a long time 
[1-3]. Yet, matrices have been more useful for “advanced” 
courses or for computed aided oriented books [4, 5]. Popular 
introductory circuit books usually make limited use of them 
when coming to the mathematical analysis of the circuits. 
The main emphasis is either for the solution of a set of 
equations using Cramer’s or determinants [6, 7] or mainly 
for preparing the equations for use in Matlab® [8]. Gottling 
[9] focuses more on the use of matrices, but emphasis is 
definitely on Matlab programming.  

Almost all teachers would agree that the use of matrices 
in the introductory courses, without more than a precalculus 
level treatment, would focus in the solution of the set of 
linear equations, and this is in fact how matrices are used at 
this level and will certainly be most of the time. Properties of 
matrices are also linked with some properties of circuits, 
although this relationship is seldom considered.  

The main problem with matrices in introductory courses 
is of numerical nature since hand and pencil analysis 
becomes usually more complicated, except for simple cases; 
Cramer’s rule is impractical for more than three equations.  
Software tools such as Matlab®, Mathematica® or 
MathCad® alleviate, but do not necessarily solve the 
problem, since there are still practical problems associated 

for home study such as the program availability, the 
computer, and so on. 

On the other side, modern graphical calculators such as 
the TI-89™, HP49™ and many others have matrix 
operations included, so students count now with a 
computation capacity allowing them to focus on the solution 
of the equations as easily as with the use of expensive 
software and laptops. 

However, the power of such tools can only be 
appreciated at elementary courses if we reconsider the way 
matrices are used in circuit analysis. True, the main use of 
matrices at this level will still be the solution of equations. 
Yet, the equations have more power than usually thought 
when properly considered and the solutions adequately 
interpreted. Most texts use matrices as an intermediate tool in 
a solution process which becomes invisible at the moment 
the circuit includes elements such as symbolic sources or 
multiple sources as functions of time in resistive circuits, etc. 
In these situations, the student without access to calculators 
or programs with symbolic manipulation power becomes lost 
for circuits with a little more complexity.  

The purpose of this work is to look at elementary matrix 
theory, or better, at the use of matrices to solve equations, 
under a renewed perspective, which puts at the reach of early 
classes in circuits the tools of matrices in a formal and useful 
way. For all practical purposes, the approach given here is 
extendable to any linear system, mechanical, electrical, etc. 

No new theorem or theory is introduced, only an 
approach from a new perspective. Among features of this 
approach attractive for using matrices early we can mention:   

• There is no need to consider complicated notations 
such as sub matrices and operations with them. [3,4,10] 

• Only numerical operations are involved, so there is 
no need for programs or calculators with symbolic 
capabilities. 

• There is a direct and immediate connection between 
theoretical concepts in linear circuits and how equations are 
set up and solutions interpreted.   

The theory and examples presented in this paper are 
limited to resistive circuits due to space limitations. The 
method and numerical procedures are of course extendable to 
the phasor domain. Other topics that stem from an extension 
of this approach are left outside this paper. The setting of 
equations directly using characteristics of equations is not 
considered, since the rules are already popular and can be 
looked elsewhere, like in [7, p. 90, p. 105] 
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This approach does not pretend to substitute, but to 
complement, other methods, including hand and pencil 
procedures, too useful in the development of intuition, or 
more convenient under different circumstances.  

M ATHEMATICAL BACKGROUND  

A set of linear mathematical equations is written as 
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In matrix form, this can be written as  
 
                                     Ax=b                                              (2) 
 
where  
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Here, the coefficient matrix A and the vector b are assumed 
to be known, with A being invertible. The solution for x in 
(2) is then found with 
 
                                   x= A-1b                                              (3) 
 

This result can be found in any standard text using 
matrices to solve the set (1). Now, our new focus goes into a 
common form for the set of equations  in circuit applications, 
namely, when the right side elements of (1) are in fact linear 
combinations themselves. That is, the form 
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. 
Although the main difference between (4) and (1) is that 

now the right hand side of each equation is a linear 
combination of the szi' , and thus no particular interest 

seems to arise, very often the szi'  are parameters of 

interest, such as other unknowns, special functions, 
constants, etc. In this case, it is useful to discuss the 
equations under other perspective.  Using column 

vectors [ ] mibbb T
niiii ,...,2121 == Lb , (4) can 

now be expressed as  
 
 mm zz bbAx L+= 11                                           (5) 

 
or else in the form 
 
  Ax=Bz                                                   (6) 
 
where B is the matrix with the b vectors as columns, and z 
the vector of the parameters zi. 

With the notation of (5) or (6), the solution for the set of 
equations becomes 
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22
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The form of system (4) is very common in linear 

circuits; and for that matter, in any linear system. Some 
examples will illustrate the use of it later. For the moment, 
an important consequence of (7) is the fact that the solution 
for any variable xi in (4) is of the form 

 

mimiii zkzkzkx +++= L2211                                 (8) 

 
where kih is the i-th element of the vector A-1bh or the 
element in the i-th row and h-th column of A-1B.  

Notice that from the algorithmic point of view, the 
solution of system (4) is reduced to numerical matrix 
multiplication and and appropriate interpretation. A simple 
example will illustrate this remark 

 
Example 1: Solve the following system for variables x 

and y: 
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can be found, according to (7), with the operation 
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This numerical result can now be interpreted as 

tetx 211380 −+−= )cos(  and tety 24334 −−= )cos( . End  
 
The example, although simple enough to be worked by 

hand, illustrates the procedure for any order and  pretends to 
bring to the attention two points: first, by associating the 
right hand side to a matrix and not to a vector, we reduce the 
operations to a numerical procedure not involving the 
parameter t or the cosine or exponential functions; second, 
the final result as well as the method statement requires  
interpretation of computer (calculator) results; this is aligned 
with the skills ABET lists for engineering programs[11]. 

The coefficients kih in (8) can be interpreted in a suitable 
way for applications and for use in even lower tech 
calculators, which may not necessarily have matrix 
operations but just a utility for solving linear equations of 
form (1): 
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A first consequence of (9) is that system (4) can be 

solved using systems of the form (1)  m times, each one with 
the elements of the appropriate vector bk. Second, (9) 
naturally leads us to the basic properties of linearity, that is, 
the homogeneity and additivity properties.   

INTERPRETING THE MATHEMATICAL RESULTS FOR 
APPLICATIONS  

The form of system (4) is the general form of equations with 
respect to voltages and currents. This follows from the very 
fact that (a) Kirchhoff’s equations are linear in nature – and 
hence, linear also for non linear networks, - and (b) that the 
element equations are linear by definition. The sources may 
be of any kind, symbolic or dependent of time, as far as they 
do not introduce non linear relationships for voltages and/or 
currents. This feature, together with interpretation (9), will 
allow us to work with symbolic sources, time-dependent 
sources, superposition, network functions and other 
characteristics, and many more situations. It will be easier to 
illustrate these remarks using examples. 
 
I. Symbolic Sources, Superposition and functions of time. 
 
Example 2 (symbolic sources). For the circuit of figure 1, 
solve for the node potentials in terms the sources E1 and  I2.  
 
We will use the common concept of supernode [7, 8] for 
nodes 1 and 3, taking equations for nodes 4 and the 
"supernode" (1,3) and add the dependent source equation. 
The reader may check the following equations, where zero 
coefficient terms were omitted for simplicity: 
 
Supernode (1,3): 
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FIGURE 1 CIRCUIT FOR EXAMPLE 2 
 

We see that equations (10)-(12) are of the form (4). We 
can therefore write the matrix form (5), Ax=Bz 
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In this expression the operations in the elements have 
not been realized to illustrate the fact that, when using 
calculators, the operations do not need to be carried out 
previously. We can now work the operation 
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The numerical result is next interpreted as  
 

V1=0.805E1 + 8.123 I2,  V3=0.948E1 - 4.713 I2 and 
V4=0.862E1 + 2.989 I2 

             End of Example 
 
Example 2 can be similarly worked for time dependent 

sources the type E1=kf(t) and E2=mg(t). In this case, the 
constants k and g are introduced as factors in the respective 
columns in B and the time functions then added when results 
are interpreted, as it was illustrated in Example 1. 

Example 2 also illustrates the superposition principle 
from the very set up of the equations. In fact, one can see 
that the first column of the matrix B of example 2 is the 
situation in which I2=0. This can be double checked by 
open-circuiting the source and writing again the equations. 
Similarly, the second column corresponds to the case E1=0, 
which can be verified short-circuiting node 2 to ground and 
writing the equations. Consequently, the first and second 
columns of the resulting matrix show the individual 
contributions of each source. Thus, when individual 
contributions need to be highlighted, write a separate column 
for the sources instead of adding all of them in one term.  

Interestingly enough, this also illustrates the fact that the 
matrix coefficient may written after turning off all the 
independent source. This has important consequences in 
transformations and applications of circuits. 

II. Network Functions 

Equation (8) and interpretation (9) can be directly related to 
transfer and port functions. If the zi’s in (4) are voltage or 
current input magnitudes, and xh is a response voltage or 
current, then, according to (9), khi can be interpreted as the 
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network function (either transfer or port, depending on the 
variables involved) 
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Notice that, mathematically, not all variables in (4) need 

to be responses. The network function for only one input is 
worked similarly, making the input value 1 and interpreting 
the results accordingly. Again, let us use an example 
providing an ample illustration.  

 
Example 3.  For the sub circuit of Fig. 2, find the input 
resistance Vin/Iin, as well as the transfer functions using 
nodal equations. 
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To set up the equations, we prepare the circuit introducing an 
“input” Iin=1A, assign nodes and ground as shown in Fig. 3. 
With this setting, Vin=V1, Va=V2 and Vb=V2-V3 , 
Ia=V2/2000 and Ib=Vb/5000. 
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FIGURE 2   CIRCUIT FOR EXAMPLE 3 
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FIGURE 3   CIRCUIT PREPARED FOR ANALYSIS 
 
To solve for the required functions, from (9) and (13) we 
conclude that these values will be numerically equal to the 
functions Rin, Va/Iin, Vb/Iin, Ia/Iin and Ib/Iin. Dividing all 
the transfer functions by Vin will yield then the rest of the 
functions. Setting up the equations we get 
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The solution for this equation yields  
 
v=[2365.4  1634.6  1826.9]T, Vb=v(2)-v(3)=-192.3, 
Ia=v(2)/2000= 0.817  and  Ib=Vb/5000 = -0.038. These 
results are interpreted directly as 
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These values are now divided by Vin=v(1), already available 
from the resulting vector, to yield 
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                                                                      End of Example 
 
The mathematics of this example is more traditional, but the 
emphasis on the appropriate interpretation and use of results 
after (9) illustrates the point. Moreover, this example will 
serve easily for introducing the next two subsections. 
 
III. Thevenin equivalent circuit 
 
Thevenin’s theorem states that any linear sub circuit is 
equivalent to a voltage source Vth in series with a resistance 
Rth. The voltage source is the open circuit voltage between 
the terminals and the resistance is the equivalent resistance 
seen at the port. This interpretation is the commonly used for 
finding the equivalent representation, and it is advised to 
continue doing it for simple circuits or for pedagogical 
reasons. However, when the circuit becomes complex or 
time is important, setting up the equations in the form (4) can 
be of help.  

For that purpose, we add a dummy symbolical current 
source Itest at the port, as shown in Fig. 4a. When Itest=0, the 
source behaves as an open circuit, so the voltage across it 
will be Vth, (Fig. 4b). When all the sources in the port are set 
to zero, the source will see the equivalent resistance (Fig. 4c) 
so VAB=RthI test. Following (8) and interpretation (9), we can 
therefore say that the solution for VAB in Fig. 4a will be 

 
 testththAB IRVV +=                                         (14) 
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FIGURE 4 SETTINGS FOR FINDING THEVENIN’S EQUIVALENT 
CIRCUIT USING A CURRENT SOURCE. 

 
Recall that Vth in (14) is not necessarily a number; it can 

be a symbolic value itself or a combination as in example 1 
or example 2. To enhance the interest of this remark, 
consider the following example. 

 
Example 4.  Find the Thevenin equivalent for the port of 
Fig. 5, where the independent sources have symbolic values. 

The settings for the nodal equation are given in Fig. 6. 
The matrix equation for this circuit is 
 













































































=

++−

−+++−

−+

testI
sI

E

V

V

VE

1

01
300
1

00
10000

1

10
10000

1

3

2

1

2000
1

500
1

300
1

2000
10

2000
1

2000
1

10000
1

5000
1

1000
21

1000
21

0
31

1
10000

1
1000

1

  

 
The application of the numerical operation yields 
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FIGURE 5   CIRCUIT FOR EXAMPLE 4 
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FIGURE 6  SETTINGS FOR  CIRCUIT OF FIG. 5 
 

To read the required result, remember that the first row 
corresponds to the voltage in the test source. Using (14) as 
reference, the column for Itest, the third one, yields the 
Thevenin resistance, while the rest of the columns yield the 
Thevenin voltage. Associating the numbers to the symbolic 
values as it was done in example 1, we have  

 
Vth = 0.873 E1 + 29.225 Is;   Rth  = 7.418 kΩ 

 
     End of Example 

The Norton equivalent representation can be similarly 
worked out after the proper setting or the proper equations 
are considered.  

 
IV. Two Ports. 
 
A two port is a subcircuit where four or three terminals are 
identified for connection to the outside world as shown in 
Fig. 7 The variables identified with the two port are the 
voltages and currents  V1, I1, V2 and I2. 
 

   

V1
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+
- V2

+

I2

V1

I1

+
- V2

+

I2

( a ) ( b )  
FIGURE 7 TWO PORTS a) FOUR TERMINAL, b) THREE TERMINAL 

 
A two port without independent sources may be 

characterized by a set of two port parameters [10]. To find a 
given set of parameters, we exploit here the fact that in (4) 
the variables zi are any type of parameter of interest. With 
this in mind, the procedure can be described as follows: 

• Step 1: In each port introduce a symbolic source of 
any type, with voltage and current directions in the same 
direction as the corresponding port variables.. 

• Step 2: Set up the equations as usual, including all 
the port variables (hence, in nodal equations, for example, do 
not forget to include the current in the voltage source; in loop 
equations, the voltage of a current source). 

• Step 3: If necessary, manipulate the equations so the 
“independent” variables appear in the right hand side. 

• Step 4: Solve the equations. The submatrix formed 
with the rows of the "dependent" port magnitudes define the 
port parameters.  

Let us illustrate with an example for the ABCD 
parameters, in which the equations are of the form 
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with independent variables  V2 and –I2 (note the sign)  
 
Example 5: Find the ABCD parameters for the two port of 
Fig. 8. 
 

 
FIG. 8  TWO PORT FOR EXAMPLE 5 

 
The setting for nodal analysis is shown in Fig. 9  
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FIG. 9 TWO PORT PREPARED FOR NODAL ANALYSIS 

 
The nodal equations, after manipulation to show the 
variables V2 and –I2 in the “known” side, become of the 
form Ax=Bz, with vectors x=[V1, I1, V3, V4]

T,  z=[V 2, -I2]
T 

and matrices 
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


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
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
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


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

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00 

E

E
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Doing the operation A-1B we obtain the result 
 

                 








−











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2
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3

1

1
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V
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EE
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V

V

I

V
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..  
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..

 

 
from which we interpret 
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..
 

                                                                    End of Example 

CONCLUSIONS 

A new approach has been adopted to work with the equations 
naturally arising in linear circuits, in which the right hand 
side is usually a linear combination of sources or variables. 
With this approach, several advantages are obtained, among 
which we can mention the easiness to work numerical 
procedures where symbolic ones were necessary before. This 
feature is useful for students, both theoretically and 
practically, especially when no symbolic tools are available. 
This feature alone makes it attractive for use in early stages, 
when numerical complexities are of main concern.  

Other advantages include the development of skills such 
as interpretation of computer (in this case, calculator) results, 
and knowing how equations relate directly to objectives and 
to properties of circuits. 

The approach also allows the development of straight 
algorithms for the solution of common applications. Space 
limitations have not allowed a complete presentation of 
many more possibilities, which are left further discussion. 
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