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Abstract - This paper describes a proposal for a 
programming methodology which has been applied 
by the authors in their own programming work and 
in the teaching process as a pedagogical resource 
for first year courses on computer programming for  
electrical and electronics engineering students at 
Universidad Nacional del Sur,  Argentina. 
The original idea was set up for sequential 
processes, as it was for typical calculus engineering 
problems or simple data administration.  Currently 
the idea follows modern concepts of computer 
programming methodologies. In particular, 
“extreme-programming” principles, like customer 
involvement, which may naturally accomplished by 
this methodology. 
The central core idea is describing any task by 
specifying its structure (what has to be done) 
separately from the implementation (how it is 
accomplished). The notion of finite state automaton, 
which is a conceptual device well fitted for 
electronics engineering students, is taught from the 
beginning and the end user or client may be part of 
the programming team while designing a structured 
solution.  
A version of this environment is being applied for 
the new academic curricula programs.  We first 
present a learning environment to describe the 
behavior of any given task separately from its 
implementation and then we apply a methodology 
to guide this description for a particular 
implementation.  
 
Index Terms - Task conception, teaching programming, 
description language, e-learning. 
 

INTRODUCTION  
 
Current software development is strongly influenced 
by the agile methods [2][3][9] like extreme 
programming, however we agree with D.Parnas (cited 
in [3]) on the idea that the so called “software crisis” 
has derived into a chronic problem. As educators we 
need to understand clearly the new developments at the 
same time that we teach the basic foundations of 
computer programming somehow independently of 
fashionable circumstantial soft/hard developments. 
 It is a hard work to do. 
 
In this paper we consider that the way a given task is 
conceived is essential for understanding its inner 

workings, in order to describe it later in a programming 
language. However before any formal coding is done 
there should be a clear understanding of the nature of 
the work independently of its implementation.  The 
connection between the task description and its 
implementation depends on the tools that will be used, 
like an artist conceives his/her work on the basis of the 
tools to be applied into the artwork. The inspiration 
found in the bibliography has influenced our approach 
to teaching programming. 
The methodology we show in this paper, SOL (from 
Structure Oriented Language), was originally set up for 
the intention to document some existing gaps between 
de verbal or textual description of a task and the formal 
description in a programming language [5].  The 
approach to computer programming teaching that we 
propose here is oriented to engineering students from 
non-computer science careers. The methodology is 
based on the notion of work , which is previous to the 
conception of any program [5].  Even though the initial 
intention was to separate clearly the way a program is 
conceived from its implementation, it became 
necessary to use a precompiler to show (via Pascal) the 
assignments for the typical engineering problems [7]. 
In past years an unforeseen problem has appeared: the 
lack of intellectual training of the students coming 
from the high schools [8].  However, in the new study 
program  curriculum we are planning to teach Java 
through this teaching methodology. The idea of a 
unifying programming environment  where different 
programming languages may coexist, may be of special 
interest as a means for the reuse and portability of 
programming systems.   
While such applications are natural for the 
environment presented in this paper, our main goal is 
the development of a methodology for teaching 
computer programming to non-informatics students.  
From the standpoint of education in engineering it may 
seem as another disciplined approach to teach software 
development.  No formal statistic has been collected so 
we cannot assess its performance, but the experience 
collected in its use during the last years indicates that it 
has worked very well, especially in challenging classes 
of recent high school graduates. It will be applied in 
the new curricula study program on electrical and 
electronic engineering. Moreover, for advanced 
courses, an e-learning enviromment is under study. 
 
Describing a work: Even a complex work can be 
described in a sequential way, as for instance in written 
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natural language. Later, a reader should be able to 
understand how it works and even to foresee its 
behavior. It seems that all behavioral knowledge can be 
transmitted in this way.  
 There are no limits to the possibility of describing a 
work by means of a sequential language, even when 
there are simultaneous behaviors and interactions 
among the parts of a given task. Analogously, in a 
movie/novel the author has to describe the arguments 
as to be understood by means of a sequential 
view/reading of its work. 
Traditionally, at least for non informatics professionals 
like us (pure electronics engineers), the links between 
the specification of a task and the program that carries 
it out, are only expressed as natural language 
comments. However, few clues survive, in general, that 
may help to figure out how the programmer conceived 
the task. The history of the intermediate steps towards 
the final solution is difficult to trace.   
This methodology, oriented to engineering students, 
tries to fill the gap between the conception of an idea 
and its implementation starting form the basis that 
every finite state behavior can be modeled through the 
behavior of a finite state automaton: a concept well 
understood by engineering students. 
 
The description of a program as a finite state 
automaton: From the observation of how a work is 
done, at least one of a  mechanical nature, it may be 
concluded that a work is the interaction among actors 
in the same way that in a movie the history is played 
out by actors. The actors do their jobs by applying a 
sequence of working tools (those that change the 
properties of the object being transformed by the work) 
followed by a sequence of tests (using those tools that 
evaluate the properties of the object or by checking 
logical conditions on the input). Eventually, both 
sequences of actions may be empty, but not 
simultaneously, otherwise the task performed will be 
the  null task [5][6]. 
Our starting hypothesis was to consider a program as 
the description of a work  We find this statement sound 
and there is not reason to assume it is false. This 
statement leads us to ask about the nature of a work  
The more acceptable definition in a dictionary says 
something like "... the transformation of a thing by the 
action of applied forces."   
By observing how work is done, we may distinguish al 
least five essential components, i.e. components that 
must be present in the conception of a work.  These 
are: Primary material : it is the initial "thing" in the 
definition, i.e. the crude material before the 
transformation is carried out. Final product : it is the 
final "thing", i.e. into what was the primary material 
turned on after the transformation has been done. 
Tools: these are the artifacts or utensils that have to be 
applied on the material to do the "transformation". In a 
broad sense only two kinds of tools are conceivable: 
work and test tools. Work tools are applied to 

"transform" the properties of the "thing", and test tools 
are applied to check out the properties of the "thing" 
being transformed. Description of the task: It is a 
description or sketch in some language (may be verbal, 
graphical or mental) of how the tools should be applied 
to transform the primary material into a final product. 
And finally, Mechanism: it may be conceived as the 
artifact or device (humans are also included 
somewhere), which, according to the description of the 
task, applies the tools to do the work.  
Let us imagine a man (say, a caveman) doing a known 
task such as sharpening the tip of an arrow. Let us try 
to imagine how he applies the tools (working and test 
tools) to sharpen an initial stone (primary material) in 
order to give it such form as to be considered useful as 
an arrow tip (final product). Even though the simplicity 
of this notion, it suggests that the nature of a program 
shares something in common with the task that is being 
carried out by our primitive hunter. It may be observed 
that his task consists of an alternate succession of 
strokes and observations.  Strokes to transform the 
stone and observations to test how the stone shape 
resembles an arrow tip.  
This allows us to conceive any task as decomposed in a 
sequence of elementary tasks, in which each one is, in 
turn, a sequence of applications of work tools followed 
by a sequence of applications of test tools.  In the 
context of a computer (i.e. a running computer) the 
primary materials are the data in the variables and the 
tools are the instructions in a computer language. Here 
again we may distinguish two kinds of instructions: 
those which transform the contents of variables (such 
as assignments) and instructions, which test something 
(conditional statements). 
So, by analogy we may call elementary program in 
some language L to a sequence of assignment-like 
instructions followed by a sequence of conditional 
statements. Both sequences may be empty but not 
simultaneously (to avoid the null task). 
In fact, our primitive artisan behaves like an actor in a 
movie called “Show me how you work” but in general 
there will be more than one actor in its cast.  Therefore 
we may consider a work as carried out by a set of 
actors communicating between each other. 
The rather simple concept of elementary program is the 
bridge towards the field of finite state machines, since 
we model an elementary program as a state in some 
machine.  Note that the property of being elementary 
does not depend, in some level, so much on the task as 
on the tools that are available. For instance: "search for 
a given number in an array", is an elementary program 
only if the language to represent this task allows search 
operations like this one. 
We now have an intuitive idea of what is a program, 
but we have to turn to discuss what actually is 
programming.  If we say that programming is the task 
of writing a program, then what is the description of 
the task of writing a program? 
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Since human beings are the "mechanisms" that produce 
such a wonder, we may recognize the initial 
specifications as the primary material, the human 
intellect as the tools and the training in orderly thinking 
(somehow mysteriously) the description of the task of 
writing a program. In this sense we may state that the 
different programming techniques are rational 
intentions to describe the task of writing a program 
based on some paradigmatic model. 
 
 A Finite State Automata Program Model: The 
teaching experience in Switching and Sequential 
Machines Theory has shown us that the finite state 
automaton (FSA) is a model well understood by 
engineering students. Noticing that relatively complex 
automata are designed and implemented very 
efficiently on hardware components supports this fact.   
The behavior of a FSA is represented by a table in 
which rows are states (specifying some output to be 
done) and the columns are inputs or stimulus. There is 
an initial state (or row) and for each possible input 
(column) the entry shows the next state of the FSA.  
Additionally there will be a final state, that when 
reached stops the FSA. 
To explore the advantages of modeling finite state 
sequential behavior, we want to introduce a model in 
which a program may be modeled by a FSA.   It seems 
natural to conceive any given task as decomposed into 
elementary tasks composed of the application of work 
tools followed by the application of test tools. Work 
tools are applied to modify the properties of raw 
materials and test tools allow testing how these 
properties are. Tools in general may be very 
sophisticated but the above decomposition will still 
work under a convenient interpretation of tools and 
primary materials. 
In the case of a computer, the assignment-like 
statements may be viewed as work tools modifying the 
contents of memory cells interpreted as raw materials. 
The conditional statements are test tools, which allow 
the computer to decide what to do next. Therefore, we 
may define an elementary program in language L as a 
sequence of assignment instructions in L, followed by 
a sequence of conditional statements in L. Note that the 
property of being elementary does not depend upon the 
problem itself, but on the level of the language in 
which the program is written.  Let us now conceive the 
task of an actor in some language L as a FSA in the 
following way: 
 i) There is an initial state 
ii) Each state is represented by an elementary program 
in L. A sequence P of assignment-like instructions 
(work tools) followed by a sequence C of conditional 
statements (Test tools). 
 iii) There are two inputs True and False (Y and N). 
They represent the logical values of the condition set at 
the end of each elementary program. (For the sake of 
simplicity we will restrict the model to sequences of at 
most only one logical conditional statement). 

iv) The current state is the one being executed and the 
next state will be determined by the logical input 
entered at the end of each elementary program.   
It is known, from the structured programming 
principles on writing programs [1][4][10][11][12][13], 
that a program design is made by successive steps or 
refinements. At each step a module is refined by 
explicating its behavior. This refinement process will 
continue until the whole program is written in a 
practical programming language.   We will now state a 
similar procedure to write a program as a FSA.   Let us 
call PPL the practical programming language in which 
the program will finally be written. The programming 
procedure is as follows (let us assume an imperative 
language): 
 Step 0:  Choose the language you better understand, 
for expressing your ideas. Conceive the whole program 
in this language (L) as a one state FSA. Customers 
have to be engaged in some way. 
 Step 1 to n:  If there is a state which cannot be clearly 
written in PPL, then conceive it in L as a FSA. 
(Therefore a state in the automaton is replaced by new 
states forming themselves a FSA. As a clarity rule 
conceive each FSA having as few states as possible.) 
 Step n + 1: (At this step all the states should be 
"clearly" written in PPL). 
 Write the code in PPL for all states. (This step is for 
developers only). 
 In this model the control structure of a program (steps 
1 to n) is written separately from the rest of the 
statements (step n+1). The control structure, in turn, is 
modeled by the state transitions of a FSA. Each state, 
stating in some language the purpose of its task, is 
refined either by statements in PPL (at step n+1) or by 
a new FSA.  Therefore, a program may be seen as a 
hierarchy of automata where the dependence relation 
can be represented by a tree. The root is at one state 
automaton describing the global purpose of the 
program. Then each refinement adds several nodes to 
the tree and this process continues until all the states 
(or leaves of the tree) can be modeled by a sequence of 
statements in PPL. In the next section we present a 
language definition suitable to deal with our proposed 
model for programming. 
Therefore, in this model a program may be written in 
successive steps translating the description of a task 
from a natural language into a formal language 
oriented to a computer. Note that a program conception 
is a chain of refinements written first in L then in PPL.  
When does the change occur?  If the PPL is applied 
from the beginning we are just doing the standard 
coding in PPL. Otherwise, the shift of the language 
programming, from L to PPL, will obey to the learning 
process suggested by this methodology. 
 
A Meta tool for an existing programming language. 
The language SOL is oriented to show explicitly how a 
programmer conceives the structure of a program. Let 
us present the SOL syntax and semantics and then 
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examples of its application. The language SOL will be 
at first conceived as a system to produce code into an 
existing PPL. 
 
Syntaxis and semantic of SOL. Using BNF 
production rules the syntax and semantics may be 
given as follows.   
Preliminary notes: 
FSA:  Stands for Finite State Automata 
PPL: Stands for Practical Programming Language 
<comment> are documentation comments ended with 
“end of line” o any other delimiting symbol as used in 
the standard programming languages. It will depend on 
the precompiler design.  
The semantic rules corresponding to the syntax 
sentences are being written double quote delimited.  
<SOL>::=SOL <comment > < Work_description > 
<Implementation> END SOL 
“The solution of a task has two well differentiated 
parts. First, the description of the task and then the 
implementation in some PPL.” 
< Work_description >::=<Actor> FIN |<Actor>  < 
Work_description >  
“The task description is a list of characterizations of 
the work to be done by each actor (possibly only one) 
ended by the word FIN. The first actor is the principal 
actor, or the work starter. The rest may be added 
arbitrarily. For programming style use alphabetical 
order.”  
<Actor>::= ACTOR < Actor_ID > 
<actor_control_structure> END ACTOR 
“The coding of an actor is delimited by the words 
ACTOR and END ACTOR” 
< Actor_ID >::= unique word identifying the actor. 
<actor_control_structure>::=<state_refinement>FIN | 
<state_refinement><actor_control_structure> 
“The actor description is an ordered list of refinements 
ended by the word FIN. The creation order of the 
refinements follows, necessarily, a descendent route. 
So, a refinement tree grows  down. The leaves of this 
tree are the final refinements, which do not require 
further detail and are implemented by the PPL 
directly.” 
<state_refinement>::= REF 
<depth_identifier><FSA_definition> END 
<depth_identifier>| 
 REF <depth_identifier> IS ACTOR < Actor_ID>: 
<depth_identifier> <comment> | 
 REF <depth_identifier> IS ACTOR < Actor_ID>: 
CREATE  | 
 REF <depth_identifier> IS ACTOR < Actor_ID>:  
DESTROY [ALL] 
“The state refinement starts with REF and an identifier 
and then there are four interpretations. 1) If this 
refinement belongs to the actor that is being refined, 
then it follows the FSA description of the refinement 
ended with the word END and the same identifier. 2) If 
the work to be refined belongs to other actor action, 
then it follows IS ACTOR with the identifier of that 

action. 3) If it refers to the creation of a new version of 
an actor then it follows IS ACTOR then the identifier 
for this actor followed by CREATE.  4) If it refers to 
cancel or destroy an actor (previously created) then it is 
followed by the word IS ACTOR then the word 
DESTROY.  The option ALL refers that all copies of 
the actor are being destroyed. Note that in each 
reference IS ACTOR both the emitter and the receiver 
are perfectly identified.  All actors have to be created 
by other actor. The only exception is the initial actor.”      
<depth_identifier>::=  null |  <identifier> 
“A depth identifier follows the classical rules for tree 
depth identifier (Dewey notation). In particular if there 
is not an identifier it means that it is the first 
refinement”      
 <identifier>::=<positive_integer > | <positive_integer> 
. <identifier> 
<FSA_definition>::=<state_description>|<state_descri
ption><FSA_definition> 
“A FSA is described by a list of state descriptions of its 
states. The states are consecutively numbered up from 
1”  
<state_description>::= <positive_integer>[ DO 
]<task_description> THEN <next_state_list> 
 <task_description>::=  it is a description in natural 
language of the purpose of this elementary task               
“The task description is identified by a positive integer 
(starting from 1) followed optionally by the word DO 
and the description in natural language of the purpose 
of the state task”     
<next_state_list>::= <next_state_identifier> 
|<next_state_identifier> OR <next_state_list> 
<next_state_identifier>::= <positive_integer>| EXIT 
<positive_integer>|STOP  <positive_integer>::= 
<digit> |<digit><positive_integer> 
 <digit>:: = 0 | l | 2 | 3 | 4| 5 | 6 | 7 | 8 |9 
“After the word THEN it is specified the next action to 
be taken by the FSA. 1) If it is a positive integer it 
refers to that state in the same FSA. 2) If it contains the 
word EXIT it refers to that identifier in the previous 
FSA (parent node). 3) If it is the clause STOP it forces 
to end.”  
Up to this point the <Work_description>, hopefully, 
describes the global behavior of the work. Note that 
only a few special tokens are used to picture all the 
work structure (ACTOR, CREATE, DESTROY, DO, 
END, EXIT; IS, FIN, OR, REF, SOL, STOP, THEN).  
The programmer’s team has now a formal description 
of the task to be done by all the actors of the work 
without having written any PPL implementation.  This 
version of the work can be shared among other 
personnel for discussion and can be even shared in a 
learning environment without having any clue about 
how to implement it. The global description is 
obviously not unique but it is a good start for sharing 
among non-informatics professionals since the syntax 
of SOL is very simple. The customer may share this 
description and test it on a special module that replaces 
the unfinished refinements (leaves of the tree) by their 
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simulation. This feature allows running partial 
completed programs to be approved by the customer. 
 
Syntax and semantic related to the PPL 
<Implementation>::=<Global_implementation><Actor
_implementation_list > 
“In particular for teaching it is advisable to start with 
Pascal.  So, this part may look somewhat tied to this 
language. This implementation has two parts: the 
global implementation and a list of the actor 
implementations.”  
<Actor_implementation_list>::=<Actor_implementatio
n> | <Actor_implementation> <Implementation> 
<Global_implementation>::= GLOBAL <global 
_declarations>  
<global_declarations>::= global declarations required 
by the PPL 
<Actor_implementation>::=ACTOR  ACTION  
<actor_ID> <actions_description>FIN 
<actions_description>::= DEC <data_declarations> < 
actions_list >  
<data_declarations>::= particular declarations of the 
actor (if they exist at all) required by the PPL 
<actions_list>::=  <action> FIN | <action> 
<action_list> 
 <action>::= ACT <identifier> <output_state> 
<exit_condition> 
“The action identifier follows the same rules for 
refinement identifiers. In fact, an action can be 
considered as a refinement in the tree (a leaf) similar to 
the previous stage but this time written in a 
programming language” 
<output_state>::=  PPL sentences that implement the 
ouput of this state 
“This is the traditional writing of any part of a 
program. The output of a state is the set of all the 
required sentences in PPL that implement the task of 
the state. At this stage the programmer has the freedom 
to implement parts which in the previous stage 
refinements are described globally and not refined.”  
<exit_condition>::= NEXT  |  NEXT 
(<logic_condition> ) 
“The question about what to do next should be 
documented in the refinement stage. The NEXT clause 
should not be confused with the same reserved word 
that eventually may be used by the PPL. Otherwise use 
another token instead of NEXT. 
<logic_condition> ::= logic condition allowed in the 
PPL. 
 
The SOL Environment: A first version of the SOL 
environment has been implemented in DELPHI and it 
consists of some modules, which are used in the 
introductory courses on programming languages. We 
are teaching Pascal as introduction and we are planning 
to teach Java in second courses for engineering 
programming.  In particular, we are planning to offer 
some of these courses as an e-learning resource for 
teaching. The modules are: 1) A SOL code editor, 2) A 

PPL code editor where there is the generated code, 3) 
A syntactic analyzer for SOL writing errors, 4) An 
actor simulator  5) A SOL precompiler. 
The precompiler has two parts: the first one generates 
the state transition tables (or refinement tables) with 
the information of each actor given in the control 
structure. The second part generates the code according 
to the instruction given in the action description adding 
the control flow defined by the tables. 
The actor simulator allows the execution of undefined 
actors (those that have not yet being written) 
simulating its behavior like in the classic “under 
construction” sign. The user has information about the 
task to be accomplished by the particular actor and a 
list (Next state list) of options to choose one and 
manually continue the task.  
 
Example: let us use the methodology to show how to 
describe the behavior of a known system, which we 
use, almost everyday: A small university restaurant 
attended by 2 bartenders, a cashier and 3 chefs. 
The courtesy and/or personal necessities are not 
considered. This example is for didactical purposes 
only to show the description power of SOL syntax, 
since for a restaurant only the cashier may be 
implemented on computer systems.  
SOL   The work at a simple Restaurant  
ACTOR   Restaurant 
REF   
    1 Activate bartenders 
   THEN 2 
    2 Activate cashier  
    THEN 3 
    3 Activate kitchen 
    THEN 4 
    4 Open Restaurant 
    THEN 5 
    5 Close Restaurant 
    THEN STOP 
END  
REF 1 
      1 Activate bartender Juan 
      THEN 2 
       2 Activate bartender Pedro 
      THEN EXIT 1 
END 1 
REF  1.1  IS ACTOR  Bartender: CREATE    Juan 
REF  1.2  IS ACTOR  Bartender: CREATE    Pedro 
REF  2  IS ACTOR  Cashier:  CREATE    Unique 
REF 3 
        1 Activate  first chef  
         THEN  
         2 Activate second chef 
         THEN 3 
         3 Activate third chef 
         THEN EXIT 1 
END 3 
REF  3.1  IS ACTOR Chef:  CREATE   The first  
REF  3.2  IS ACTOR Chef:  CREATE   The second  
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REF  3.3  IS ACTOR Chef:  CREATE   The third  
REF 5 
       1 Close kitchen 
      THEN 2 
       2 Desactívate bartenders 
       THEN 3 
       3 Ask for cashier report 
       THEN 4 
       4  Close  cashier 
        THEN  EXIT 1 
END  5      
REF 5.1 IS ACTOR Chef:  DESTROY ALL  
REF 5.2 IS ACTOR Bartender:  DESTROY ALL 
REF 5.3 IS ACTOR Cashier: 4  Cash report  
REF 5.4 IS ACTOR Cashier: DESTROY 
END ACTOR   Restaurant 
ACTOR   Bartender 
REF   
     1 Pay attention for client/cuisine requests  
      THEN 2 or 3 or 4 
      2  Attend new request from the client menu 
       THEN 1 
      3 Attend for cuisine ready dish request 
        THEN 1 

4 Attend for closing the bill 
 THEN  1 

END  
 
In this way, we can continue the refinement process 
specifying the behavior of the rest of the actors. The 
leaves of this refinement tree show the work or actions 
that the programmer considers can write down in the 
PPL. This tree is the common language among the 
clients and programmers.  
 
 Conclusions 
The environment proposed here is just another idea for 
teaching computer programming at the first university 
levels. It summarizes our view of the programming 
teaching experience.  As a team we have not been 
engaged in any huge software project, rather we have 
been involved in teaching the first steps of 
programming to a huge audience of engineering 
students. The students’ feedback is analyzed by means 
of their final exam assignments. The philosophy behind 
this approach to teaching has guided our own 
professional programming work for more than 20 
years.  Individually we have been engaged in the 
software development of medium size engineering 
problems and business applications. For the first time 
this paper introduces the actor conception and puts 
together the concepts proposed in previous work of the 
group. 

 

 

ACKNOWLEDGMENT 

The authors are indebted to Dr. Fernando Tohmé and 
Dr. Claudio Delrieux from Univ. Nacional Del Sur and 
Dra. Virginia Cano from WBL Open & Distance 
Learning Consultants, Scotland, for a critical reading 
of the original paper. 

 

REFERENCES 

[1] ACM Computing Surveys: Special Issue on programming. Vol 
9,4 (1974) 
[2] Agerfalk,P.J. & Fitzgerald, B. (ed). “Flexible and distributed 

software processes”, CACM Vol 49,10  (2006) 
[3] Beck, K. “Extreme Programming Explained” Addison-Wesley 
(1999). 
[4] Dahl, O.J., Dijkstra, E.W. & Hoare, C.A.R. - Structured 
Programming.Academic Press, 1972. 
[5] Fontao, R.O., Ardenghi, J.R. y Arroyo, E.H. "Sobre una 
Metodología de Programación". Segundo Simposium sobre 
Aplicaciones de la Ingeniería Eléctrica y Electrónica, SIEEM 77, 
Monterrey, México 1977. 
[6] Fontao, Rafael O, Kalocai, G., Ramoscelli, G. Y Goñi, G. Una 
propuesta de investigación sobre "A PROGRAMMING 
METHODOLOGY". Workshop on Programming Methodology - 
WG 2.3 - IFIP, Tandil September 2000. 
[7] Fontao, Rafael O, Goñi, Gustavo. "SOL: Un ambiente de 
programación" 
CACIC 2003. IX Congreso Argentino de Ciencias de la 
Computación. La Plata, Octubre de 2003 
[8] Fontao, Rafael O., Repetto, Andrés P. Y Goñi, Gustavo M. "Una 
experiencia en la enseñanza universitaria de primer año". Jornada de 
Socialización de Experiencias-Programa de Articulación UNS-
Polimodal, Bahía Blanca abril 28 de 2005. 
[9] Jeffries, R.E. “Extreme Programming Installed”. Addison-Wesley 
(2001). 
[10] Presser, L. Structured Languages. AFIPS Conf. Proced. 1975. 
AFIPS Press Vol 44, pp 29l-292. 
[11] Voigt, S.  “Program Design by a Multidisciplinary Team”. IEEE 
Trans. on Soft. Eng. Vol.   1,4 (1975) pp 370-376. 
[12] Wirth, N.   Systematic Programming: An Introduction. Prentice-
Hall 1973 
[13] Wirth, N. “On the Composition of Well-Structured Programs.” 
ACM Comp. Surveys, Vol. 6,4 (1974) 247-259. 

          

                                                 
1 Authors are at Dpto. de Ingeniería Eléctrica y de 
Computadoras, Universidad Nacioanl del Sur. 
Argentina. E-mail:  fontao@uns.edu.ar, 
gmgoni@criba.edu.ar, ingelec@criba.edu.ar, 
ramoscel@criba.edu.ar. This work was made by a 
grant PGI 24/K028 in the framework of PROMEI C1J2 
“Ciclos Generales de Conocimientos Básicos – 
Carreras de Ingenieria”. 


