

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

Proposal for a Multilanguage Teaching
Programming Environment

Rafael Fontao, Gustavo Goñi, Guillermo Kalocai y Gustavo Ramoscelli1

Abstract - This paper describes a proposal for a
programming methodology which has been applied
by the authors in their own programming work and
in the teaching process as a pedagogical resource
for first year courses on computer programming for
electrical and electronics engineering students at
Universidad Nacional del Sur, Argentina.
The original idea was set up for sequential
processes, as it was for typical calculus engineering
problems or simple data administration. Currently
the idea follows modern concepts of computer
programming methodologies. In particular,
“extreme-programming” principles, like customer
involvement, which may naturally accomplished by
this methodology.
The central core idea is describing any task by
specifying its structure (what has to be done)
separately from the implementation (how it is
accomplished). The notion of finite state automaton,
which is a conceptual device well fitted for
electronics engineering students, is taught from the
beginning and the end user or client may be part of
the programming team while designing a structured
solution.
A version of this environment is being applied for
the new academic curricula programs. We first
present a learning environment to describe the
behavior of any given task separately from its
implementation and then we apply a methodology
to guide this description for a particular
implementation.

Index Terms - Task conception, teaching programming,
description language, e-learning.

INTRODUCTION

Current software development is strongly influenced
by the agile methods [2][3][9] like extreme
programming, however we agree with D.Parnas (cited
in [3]) on the idea that the so called “software crisis”
has derived into a chronic problem. As educators we
need to understand clearly the new developments at the
same time that we teach the basic foundations of
computer programming somehow independently of
fashionable circumstantial soft/hard developments.
 It is a hard work to do.

In this paper we consider that the way a given task is
conceived is essential for understanding its inner

workings, in order to describe it later in a programming
language. However before any formal coding is done
there should be a clear understanding of the nature of
the work independently of its implementation. The
connection between the task description and its
implementation depends on the tools that will be used,
like an artist conceives his/her work on the basis of the
tools to be applied into the artwork. The inspiration
found in the bibliography has influenced our approach
to teaching programming.
The methodology we show in this paper, SOL (from
Structure Oriented Language), was originally set up for
the intention to document some existing gaps between
de verbal or textual description of a task and the formal
description in a programming language [5]. The
approach to computer programming teaching that we
propose here is oriented to engineering students from
non-computer science careers. The methodology is
based on the notion of work , which is previous to the
conception of any program [5]. Even though the initial
intention was to separate clearly the way a program is
conceived from its implementation, it became
necessary to use a precompiler to show (via Pascal) the
assignments for the typical engineering problems [7].
In past years an unforeseen problem has appeared: the
lack of intellectual training of the students coming
from the high schools [8]. However, in the new study
program curriculum we are planning to teach Java
through this teaching methodology. The idea of a
unifying programming environment where different
programming languages may coexist, may be of special
interest as a means for the reuse and portability of
programming systems.
While such applications are natural for the
environment presented in this paper, our main goal is
the development of a methodology for teaching
computer programming to non-informatics students.
From the standpoint of education in engineering it may
seem as another disciplined approach to teach software
development. No formal statistic has been collected so
we cannot assess its performance, but the experience
collected in its use during the last years indicates that it
has worked very well, especially in challenging classes
of recent high school graduates. It will be applied in
the new curricula study program on electrical and
electronic engineering. Moreover, for advanced
courses, an e-learning enviromment is under study.

Describing a work: Even a complex work can be
described in a sequential way, as for instance in written

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

natural language. Later, a reader should be able to
understand how it works and even to foresee its
behavior. It seems that all behavioral knowledge can be
transmitted in this way.
 There are no limits to the possibility of describing a
work by means of a sequential language, even when
there are simultaneous behaviors and interactions
among the parts of a given task. Analogously, in a
movie/novel the author has to describe the arguments
as to be understood by means of a sequential
view/reading of its work.
Traditionally, at least for non informatics professionals
like us (pure electronics engineers), the links between
the specification of a task and the program that carries
it out, are only expressed as natural language
comments. However, few clues survive, in general, that
may help to figure out how the programmer conceived
the task. The history of the intermediate steps towards
the final solution is difficult to trace.
This methodology, oriented to engineering students,
tries to fill the gap between the conception of an idea
and its implementation starting form the basis that
every finite state behavior can be modeled through the
behavior of a finite state automaton: a concept well
understood by engineering students.

The description of a program as a finite state
automaton: From the observation of how a work is
done, at least one of a mechanical nature, it may be
concluded that a work is the interaction among actors
in the same way that in a movie the history is played
out by actors. The actors do their jobs by applying a
sequence of working tools (those that change the
properties of the object being transformed by the work)
followed by a sequence of tests (using those tools that
evaluate the properties of the object or by checking
logical conditions on the input). Eventually, both
sequences of actions may be empty, but not
simultaneously, otherwise the task performed will be
the null task [5][6].
Our starting hypothesis was to consider a program as
the description of a work We find this statement sound
and there is not reason to assume it is false. This
statement leads us to ask about the nature of a work
The more acceptable definition in a dictionary says
something like "... the transformation of a thing by the
action of applied forces."
By observing how work is done, we may distinguish al
least five essential components, i.e. components that
must be present in the conception of a work. These
are: Primary material : it is the initial "thing" in the
definition, i.e. the crude material before the
transformation is carried out. Final product : it is the
final "thing", i.e. into what was the primary material
turned on after the transformation has been done.
Tools: these are the artifacts or utensils that have to be
applied on the material to do the "transformation". In a
broad sense only two kinds of tools are conceivable:
work and test tools. Work tools are applied to

"transform" the properties of the "thing", and test tools
are applied to check out the properties of the "thing"
being transformed. Description of the task: It is a
description or sketch in some language (may be verbal,
graphical or mental) of how the tools should be applied
to transform the primary material into a final product.
And finally, Mechanism: it may be conceived as the
artifact or device (humans are also included
somewhere), which, according to the description of the
task, applies the tools to do the work.
Let us imagine a man (say, a caveman) doing a known
task such as sharpening the tip of an arrow. Let us try
to imagine how he applies the tools (working and test
tools) to sharpen an initial stone (primary material) in
order to give it such form as to be considered useful as
an arrow tip (final product). Even though the simplicity
of this notion, it suggests that the nature of a program
shares something in common with the task that is being
carried out by our primitive hunter. It may be observed
that his task consists of an alternate succession of
strokes and observations. Strokes to transform the
stone and observations to test how the stone shape
resembles an arrow tip.
This allows us to conceive any task as decomposed in a
sequence of elementary tasks, in which each one is, in
turn, a sequence of applications of work tools followed
by a sequence of applications of test tools. In the
context of a computer (i.e. a running computer) the
primary materials are the data in the variables and the
tools are the instructions in a computer language. Here
again we may distinguish two kinds of instructions:
those which transform the contents of variables (such
as assignments) and instructions, which test something
(conditional statements).
So, by analogy we may call elementary program in
some language L to a sequence of assignment-like
instructions followed by a sequence of conditional
statements. Both sequences may be empty but not
simultaneously (to avoid the null task).
In fact, our primitive artisan behaves like an actor in a
movie called “Show me how you work” but in general
there will be more than one actor in its cast. Therefore
we may consider a work as carried out by a set of
actors communicating between each other.
The rather simple concept of elementary program is the
bridge towards the field of finite state machines, since
we model an elementary program as a state in some
machine. Note that the property of being elementary
does not depend, in some level, so much on the task as
on the tools that are available. For instance: "search for
a given number in an array", is an elementary program
only if the language to represent this task allows search
operations like this one.
We now have an intuitive idea of what is a program,
but we have to turn to discuss what actually is
programming. If we say that programming is the task
of writing a program, then what is the description of
the task of writing a program?

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

Since human beings are the "mechanisms" that produce
such a wonder, we may recognize the initial
specifications as the primary material, the human
intellect as the tools and the training in orderly thinking
(somehow mysteriously) the description of the task of
writing a program. In this sense we may state that the
different programming techniques are rational
intentions to describe the task of writing a program
based on some paradigmatic model.

 A Finite State Automata Program Model: The
teaching experience in Switching and Sequential
Machines Theory has shown us that the finite state
automaton (FSA) is a model well understood by
engineering students. Noticing that relatively complex
automata are designed and implemented very
efficiently on hardware components supports this fact.
The behavior of a FSA is represented by a table in
which rows are states (specifying some output to be
done) and the columns are inputs or stimulus. There is
an initial state (or row) and for each possible input
(column) the entry shows the next state of the FSA.
Additionally there will be a final state, that when
reached stops the FSA.
To explore the advantages of modeling finite state
sequential behavior, we want to introduce a model in
which a program may be modeled by a FSA. It seems
natural to conceive any given task as decomposed into
elementary tasks composed of the application of work
tools followed by the application of test tools. Work
tools are applied to modify the properties of raw
materials and test tools allow testing how these
properties are. Tools in general may be very
sophisticated but the above decomposition will still
work under a convenient interpretation of tools and
primary materials.
In the case of a computer, the assignment-like
statements may be viewed as work tools modifying the
contents of memory cells interpreted as raw materials.
The conditional statements are test tools, which allow
the computer to decide what to do next. Therefore, we
may define an elementary program in language L as a
sequence of assignment instructions in L, followed by
a sequence of conditional statements in L. Note that the
property of being elementary does not depend upon the
problem itself, but on the level of the language in
which the program is written. Let us now conceive the
task of an actor in some language L as a FSA in the
following way:
 i) There is an initial state
ii) Each state is represented by an elementary program
in L. A sequence P of assignment-like instructions
(work tools) followed by a sequence C of conditional
statements (Test tools).
 iii) There are two inputs True and False (Y and N).
They represent the logical values of the condition set at
the end of each elementary program. (For the sake of
simplicity we will restrict the model to sequences of at
most only one logical conditional statement).

iv) The current state is the one being executed and the
next state will be determined by the logical input
entered at the end of each elementary program.
It is known, from the structured programming
principles on writing programs [1][4][10][11][12][13],
that a program design is made by successive steps or
refinements. At each step a module is refined by
explicating its behavior. This refinement process will
continue until the whole program is written in a
practical programming language. We will now state a
similar procedure to write a program as a FSA. Let us
call PPL the practical programming language in which
the program will finally be written. The programming
procedure is as follows (let us assume an imperative
language):
 Step 0: Choose the language you better understand,
for expressing your ideas. Conceive the whole program
in this language (L) as a one state FSA. Customers
have to be engaged in some way.
 Step 1 to n: If there is a state which cannot be clearly
written in PPL, then conceive it in L as a FSA.
(Therefore a state in the automaton is replaced by new
states forming themselves a FSA. As a clarity rule
conceive each FSA having as few states as possible.)
 Step n + 1: (At this step all the states should be
"clearly" written in PPL).
 Write the code in PPL for all states. (This step is for
developers only).
 In this model the control structure of a program (steps
1 to n) is written separately from the rest of the
statements (step n+1). The control structure, in turn, is
modeled by the state transitions of a FSA. Each state,
stating in some language the purpose of its task, is
refined either by statements in PPL (at step n+1) or by
a new FSA. Therefore, a program may be seen as a
hierarchy of automata where the dependence relation
can be represented by a tree. The root is at one state
automaton describing the global purpose of the
program. Then each refinement adds several nodes to
the tree and this process continues until all the states
(or leaves of the tree) can be modeled by a sequence of
statements in PPL. In the next section we present a
language definition suitable to deal with our proposed
model for programming.
Therefore, in this model a program may be written in
successive steps translating the description of a task
from a natural language into a formal language
oriented to a computer. Note that a program conception
is a chain of refinements written first in L then in PPL.
When does the change occur? If the PPL is applied
from the beginning we are just doing the standard
coding in PPL. Otherwise, the shift of the language
programming, from L to PPL, will obey to the learning
process suggested by this methodology.

A Meta tool for an existing programming language.
The language SOL is oriented to show explicitly how a
programmer conceives the structure of a program. Let
us present the SOL syntax and semantics and then

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

examples of its application. The language SOL will be
at first conceived as a system to produce code into an
existing PPL.

Syntaxis and semantic of SOL. Using BNF
production rules the syntax and semantics may be
given as follows.
Preliminary notes:
FSA: Stands for Finite State Automata
PPL: Stands for Practical Programming Language
<comment> are documentation comments ended with
“end of line” o any other delimiting symbol as used in
the standard programming languages. It will depend on
the precompiler design.
The semantic rules corresponding to the syntax
sentences are being written double quote delimited.
<SOL>::=SOL <comment > < Work_description >
<Implementation> END SOL
“The solution of a task has two well differentiated
parts. First, the description of the task and then the
implementation in some PPL.”
< Work_description >::=<Actor> FIN |<Actor> <
Work_description >
“The task description is a list of characterizations of
the work to be done by each actor (possibly only one)
ended by the word FIN. The first actor is the principal
actor, or the work starter. The rest may be added
arbitrarily. For programming style use alphabetical
order.”
<Actor>::= ACTOR < Actor_ID >
<actor_control_structure> END ACTOR
“The coding of an actor is delimited by the words
ACTOR and END ACTOR”
< Actor_ID >::= unique word identifying the actor.
<actor_control_structure>::=<state_refinement>FIN |
<state_refinement><actor_control_structure>
“The actor description is an ordered list of refinements
ended by the word FIN. The creation order of the
refinements follows, necessarily, a descendent route.
So, a refinement tree grows down. The leaves of this
tree are the final refinements, which do not require
further detail and are implemented by the PPL
directly.”
<state_refinement>::= REF
<depth_identifier><FSA_definition> END
<depth_identifier>|
 REF <depth_identifier> IS ACTOR < Actor_ID>:
<depth_identifier> <comment> |
 REF <depth_identifier> IS ACTOR < Actor_ID>:
CREATE |
 REF <depth_identifier> IS ACTOR < Actor_ID>:
DESTROY [ALL]
“The state refinement starts with REF and an identifier
and then there are four interpretations. 1) If this
refinement belongs to the actor that is being refined,
then it follows the FSA description of the refinement
ended with the word END and the same identifier. 2) If
the work to be refined belongs to other actor action,
then it follows IS ACTOR with the identifier of that

action. 3) If it refers to the creation of a new version of
an actor then it follows IS ACTOR then the identifier
for this actor followed by CREATE. 4) If it refers to
cancel or destroy an actor (previously created) then it is
followed by the word IS ACTOR then the word
DESTROY. The option ALL refers that all copies of
the actor are being destroyed. Note that in each
reference IS ACTOR both the emitter and the receiver
are perfectly identified. All actors have to be created
by other actor. The only exception is the initial actor.”
<depth_identifier>::= null | <identifier>
“A depth identifier follows the classical rules for tree
depth identifier (Dewey notation). In particular if there
is not an identifier it means that it is the first
refinement”
 <identifier>::=<positive_integer > | <positive_integer>
. <identifier>
<FSA_definition>::=<state_description>|<state_descri
ption><FSA_definition>
“A FSA is described by a list of state descriptions of its
states. The states are consecutively numbered up from
1”
<state_description>::= <positive_integer>[DO
]<task_description> THEN <next_state_list>
 <task_description>::= it is a description in natural
language of the purpose of this elementary task
“The task description is identified by a positive integer
(starting from 1) followed optionally by the word DO
and the description in natural language of the purpose
of the state task”
<next_state_list>::= <next_state_identifier>
|<next_state_identifier> OR <next_state_list>
<next_state_identifier>::= <positive_integer>| EXIT
<positive_integer>|STOP <positive_integer>::=
<digit> |<digit><positive_integer>
 <digit>:: = 0 | l | 2 | 3 | 4| 5 | 6 | 7 | 8 |9
“After the word THEN it is specified the next action to
be taken by the FSA. 1) If it is a positive integer it
refers to that state in the same FSA. 2) If it contains the
word EXIT it refers to that identifier in the previous
FSA (parent node). 3) If it is the clause STOP it forces
to end.”
Up to this point the <Work_description>, hopefully,
describes the global behavior of the work. Note that
only a few special tokens are used to picture all the
work structure (ACTOR, CREATE, DESTROY, DO,
END, EXIT; IS, FIN, OR, REF, SOL, STOP, THEN).
The programmer’s team has now a formal description
of the task to be done by all the actors of the work
without having written any PPL implementation. This
version of the work can be shared among other
personnel for discussion and can be even shared in a
learning environment without having any clue about
how to implement it. The global description is
obviously not unique but it is a good start for sharing
among non-informatics professionals since the syntax
of SOL is very simple. The customer may share this
description and test it on a special module that replaces
the unfinished refinements (leaves of the tree) by their

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

simulation. This feature allows running partial
completed programs to be approved by the customer.

Syntax and semantic related to the PPL
<Implementation>::=<Global_implementation><Actor
_implementation_list >
“In particular for teaching it is advisable to start with
Pascal. So, this part may look somewhat tied to this
language. This implementation has two parts: the
global implementation and a list of the actor
implementations.”
<Actor_implementation_list>::=<Actor_implementatio
n> | <Actor_implementation> <Implementation>
<Global_implementation>::= GLOBAL <global
_declarations>
<global_declarations>::= global declarations required
by the PPL
<Actor_implementation>::=ACTOR ACTION
<actor_ID> <actions_description>FIN
<actions_description>::= DEC <data_declarations> <
actions_list >
<data_declarations>::= particular declarations of the
actor (if they exist at all) required by the PPL
<actions_list>::= <action> FIN | <action>
<action_list>
 <action>::= ACT <identifier> <output_state>
<exit_condition>
“The action identifier follows the same rules for
refinement identifiers. In fact, an action can be
considered as a refinement in the tree (a leaf) similar to
the previous stage but this time written in a
programming language”
<output_state>::= PPL sentences that implement the
ouput of this state
“This is the traditional writing of any part of a
program. The output of a state is the set of all the
required sentences in PPL that implement the task of
the state. At this stage the programmer has the freedom
to implement parts which in the previous stage
refinements are described globally and not refined.”
<exit_condition>::= NEXT | NEXT
(<logic_condition>)
“The question about what to do next should be
documented in the refinement stage. The NEXT clause
should not be confused with the same reserved word
that eventually may be used by the PPL. Otherwise use
another token instead of NEXT.
<logic_condition> ::= logic condition allowed in the
PPL.

The SOL Environment: A first version of the SOL
environment has been implemented in DELPHI and it
consists of some modules, which are used in the
introductory courses on programming languages. We
are teaching Pascal as introduction and we are planning
to teach Java in second courses for engineering
programming. In particular, we are planning to offer
some of these courses as an e-learning resource for
teaching. The modules are: 1) A SOL code editor, 2) A

PPL code editor where there is the generated code, 3)
A syntactic analyzer for SOL writing errors, 4) An
actor simulator 5) A SOL precompiler.
The precompiler has two parts: the first one generates
the state transition tables (or refinement tables) with
the information of each actor given in the control
structure. The second part generates the code according
to the instruction given in the action description adding
the control flow defined by the tables.
The actor simulator allows the execution of undefined
actors (those that have not yet being written)
simulating its behavior like in the classic “under
construction” sign. The user has information about the
task to be accomplished by the particular actor and a
list (Next state list) of options to choose one and
manually continue the task.

Example: let us use the methodology to show how to
describe the behavior of a known system, which we
use, almost everyday: A small university restaurant
attended by 2 bartenders, a cashier and 3 chefs.
The courtesy and/or personal necessities are not
considered. This example is for didactical purposes
only to show the description power of SOL syntax,
since for a restaurant only the cashier may be
implemented on computer systems.
SOL The work at a simple Restaurant
ACTOR Restaurant
REF
 1 Activate bartenders
 THEN 2
 2 Activate cashier
 THEN 3
 3 Activate kitchen
 THEN 4
 4 Open Restaurant
 THEN 5
 5 Close Restaurant
 THEN STOP
END
REF 1
 1 Activate bartender Juan
 THEN 2
 2 Activate bartender Pedro
 THEN EXIT 1
END 1
REF 1.1 IS ACTOR Bartender: CREATE Juan
REF 1.2 IS ACTOR Bartender: CREATE Pedro
REF 2 IS ACTOR Cashier: CREATE Unique
REF 3
 1 Activate first chef
 THEN
 2 Activate second chef
 THEN 3
 3 Activate third chef
 THEN EXIT 1
END 3
REF 3.1 IS ACTOR Chef: CREATE The first
REF 3.2 IS ACTOR Chef: CREATE The second

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

REF 3.3 IS ACTOR Chef: CREATE The third
REF 5
 1 Close kitchen
 THEN 2
 2 Desactívate bartenders
 THEN 3
 3 Ask for cashier report
 THEN 4
 4 Close cashier
 THEN EXIT 1
END 5
REF 5.1 IS ACTOR Chef: DESTROY ALL
REF 5.2 IS ACTOR Bartender: DESTROY ALL
REF 5.3 IS ACTOR Cashier: 4 Cash report
REF 5.4 IS ACTOR Cashier: DESTROY
END ACTOR Restaurant
ACTOR Bartender
REF
 1 Pay attention for client/cuisine requests
 THEN 2 or 3 or 4
 2 Attend new request from the client menu
 THEN 1
 3 Attend for cuisine ready dish request
 THEN 1

4 Attend for closing the bill
 THEN 1

END

In this way, we can continue the refinement process
specifying the behavior of the rest of the actors. The
leaves of this refinement tree show the work or actions
that the programmer considers can write down in the
PPL. This tree is the common language among the
clients and programmers.

 Conclusions
The environment proposed here is just another idea for
teaching computer programming at the first university
levels. It summarizes our view of the programming
teaching experience. As a team we have not been
engaged in any huge software project, rather we have
been involved in teaching the first steps of
programming to a huge audience of engineering
students. The students’ feedback is analyzed by means
of their final exam assignments. The philosophy behind
this approach to teaching has guided our own
professional programming work for more than 20
years. Individually we have been engaged in the
software development of medium size engineering
problems and business applications. For the first time
this paper introduces the actor conception and puts
together the concepts proposed in previous work of the
group.

ACKNOWLEDGMENT

The authors are indebted to Dr. Fernando Tohmé and
Dr. Claudio Delrieux from Univ. Nacional Del Sur and
Dra. Virginia Cano from WBL Open & Distance
Learning Consultants, Scotland, for a critical reading
of the original paper.

REFERENCES

[1] ACM Computing Surveys: Special Issue on programming. Vol
9,4 (1974)
[2] Agerfalk,P.J. & Fitzgerald, B. (ed). “Flexible and distributed

software processes”, CACM Vol 49,10 (2006)
[3] Beck, K. “Extreme Programming Explained” Addison-Wesley
(1999).
[4] Dahl, O.J., Dijkstra, E.W. & Hoare, C.A.R. - Structured
Programming.Academic Press, 1972.
[5] Fontao, R.O., Ardenghi, J.R. y Arroyo, E.H. "Sobre una
Metodología de Programación". Segundo Simposium sobre
Aplicaciones de la Ingeniería Eléctrica y Electrónica, SIEEM 77,
Monterrey, México 1977.
[6] Fontao, Rafael O, Kalocai, G., Ramoscelli, G. Y Goñi, G. Una
propuesta de investigación sobre "A PROGRAMMING
METHODOLOGY". Workshop on Programming Methodology -
WG 2.3 - IFIP, Tandil September 2000.
[7] Fontao, Rafael O, Goñi, Gustavo. "SOL: Un ambiente de
programación"
CACIC 2003. IX Congreso Argentino de Ciencias de la
Computación. La Plata, Octubre de 2003
[8] Fontao, Rafael O., Repetto, Andrés P. Y Goñi, Gustavo M. "Una
experiencia en la enseñanza universitaria de primer año". Jornada de
Socialización de Experiencias-Programa de Articulación UNS-
Polimodal, Bahía Blanca abril 28 de 2005.
[9] Jeffries, R.E. “Extreme Programming Installed”. Addison-Wesley
(2001).
[10] Presser, L. Structured Languages. AFIPS Conf. Proced. 1975.
AFIPS Press Vol 44, pp 29l-292.
[11] Voigt, S. “Program Design by a Multidisciplinary Team”. IEEE
Trans. on Soft. Eng. Vol. 1,4 (1975) pp 370-376.
[12] Wirth, N. Systematic Programming: An Introduction. Prentice-
Hall 1973
[13] Wirth, N. “On the Composition of Well-Structured Programs.”
ACM Comp. Surveys, Vol. 6,4 (1974) 247-259.

1 Authors are at Dpto. de Ingeniería Eléctrica y de
Computadoras, Universidad Nacioanl del Sur.
Argentina. E-mail: fontao@uns.edu.ar,
gmgoni@criba.edu.ar, ingelec@criba.edu.ar,
ramoscel@criba.edu.ar. This work was made by a
grant PGI 24/K028 in the framework of PROMEI C1J2
“Ciclos Generales de Conocimientos Básicos –
Carreras de Ingenieria”.

