Learning to program - difficulties and solutions

Gomes, Anabeld, Mendes, A. 3.
YSEC - Engineering Institute of Coimbra - Polyteichinstitute of Coimbra
anabela@isec.pt
2CISUC — Department of Informatics Engineering - \émsity of Coimbra
toze@dei.uc.pt

Abstract - Programming is a fundamental part of
computer science curriculum, but it is often problenatic.
The high drop out and failure rates in introductory
programming courses are a universal problem that

and tools to help students. Although some of thedeols

have been reported to have a positive effect in stants

learning, the problem still remains mostly unsolved We

think that there are several reasons that cause thi
learning problem. Maybe the most important is the &ck

of problem solving abilities that many students shw.

They don't know how to program, because they don’t
know how to create algorithms, mainly due to theidack

of general problem solving abilities. This and othe

causes to student difficulties are discussed in thipaper.

Some possible solutions are proposed, so that prelohs
can be reduced.

Index terms- Educational Technology, Learning Styles,

Programming Teaching and Learning,
INTRODUCTION

It is well known that many students have difficedtiin

I. The teaching methods

The traditional teaching methods do not seem adedoa

many students needs, for different reasons:
motivated many researchers to propose methodologies e

programming learning. Programming is a very complex

subject that requires effort and a special appraatche way
it is learned and taught. To become a good progemm
student must acquire a series of abilities thatvgth beyond
knowing the syntax of some programming language.

Several approaches and tools have been proposed

aiming to support programming learning in differevdys.

Although we find reports of positive results asoacome of
some tools [1], none of them has a general usédn the
problem remains relatively unchanged as we contiadind

reports about the difficulties many students exqrer@ when
learning basic programming.

Experience shows that the problem starts for many

students in the initial phase of learning, whernythave to
understand and apply abstract programming concékts,
control structures, to create algorithms that salvecrete
problems. Particular attention is necessary in fhisal

stage, not only in the development of programmipecsic

abilities, but also (and maybe above all) in theriovement
and/or consolidation of knowledge and abilitiest thlaould
have been acquired in previous years. These indederic
problem solving abilities, logic reasoning and 80 o

THE PROBLEM

Coimbra, Portugal

Teaching is not personalizedIt would be desirable to
have a teacher always available to allow more
personalized student supervision. Immediate feddbac
during problem solving and detailed explanationesk
understood aspects could probably help many stadent
However, in reality it is impossible to give thigpe of
support due to time constraints and common course
sizes.

Teachers’ strategies don’t support all students’
learning styles People learn in several ways and have
different preferences to approach new materials. In
traditional education all students must learn atsame
rhythm and in accordance to the teacher’s pedagbgic
strategies, which are based on the teacher's teprni
style. Different students have different learningles
and can have several preferences in the way tlzey.le
Some may regard learning as a solitary processewhil
others may prefer a more dynamic learning
environment, for instance through discussions withr
peers. Additionally, some subjects may demand a
particular learning approach but, without guidance,
students will tend to adopt the style they prefewhich

has served them best in the past. It is an impbrtan
responsibility for the teacher to ensure that tiuelents
adopt the most appropriate learning approach fer th
subject at hand [2].

The teaching of dynamic concepts through static
materials. Programming involves several dynamic
concepts that many times are taught through static
means (projected presentations, verbal explanations
diagrams, blackboard drawings, texts, and so oao). F
some students this is a problem, as they fail to
understand program dynamics through this type of
materials.

Teachers are more concentrated on teaching a
programming language and its syntactic details,
instead of promoting problem solving using a
programming language The purpose of an
introductory programming course should be to inseea
students’ programming abilities. However, many sme
teachers and students focus more in the programming
language syntactic details. The language shoulg onl
serve as a tool to express ideas and algorithms.
However, an enormous amount of syntactic detais ar
taught, normally before the students have a good

September 3 — 7, 2007

International Conference on Engineering Education 4CEE 2007

understanding of some important programming
concepts. In our view, the language used in intcomhy
programming courses should be chosen considering
pedagogic suitability and not popularity in indystr
some other reason.

Il. The study methods

We consider that the study methods followed by many
students are not suitable for programming learniig. can
identify several aspects where improvement coufzpba: .

Students use incorrect study methodologiesMany
students are used to solve problems from other
disciplines through the memorization of formulas or
procedures. Sometimes students memorize formulas,
without a complete understanding of the underlying
concepts, just knowing that a particular formulawgtl

be used to some type of problem. Programming reguir
a different study method. It should be essentially
practical and very intensive, quite different frevhat is
required in many other courses (more based in
theoretical knowledge, implying reading and some
memorization). Some students believe that they can
learn to program mostly through reading a textbook,
failing to understand that their main activity sttbbe
solving as many programming problems as possible.
Students don't work hard enough to acquire
programming competences They are used to subjects
where assisting classes and studying a text book is
enough. However programming demands intense work
extra classes.

I1l. The student’s abilities and attitudes

Students don’t know how to solve problemsWe think
that the most important cause to the difficultieany
freshmen feel to learn programming is their lack of
generic problem solving skills. The students démow
how to create algorithms, mainly because they don’{
know how to solve problems. Problem solving reciire
multiple abilities that students often don’t hamamely: .
i) Problem understanding - Many times the studémts

to solve a problem without completely understand it
Sometimes this happens because the student has
difficulties interpreting the problem statement aniers
simply because students are too anxious to statihgyr
code and don't read and interpret correctly theblerm
description.

i) Relating knowledge - Many students don't edttbl
correct analogies with past problems and don’tsiem
prior knowledge to the new problems. They tend to
group the problems that have the same superficial
characteristics instead of the same principle.
Consequently, many times students base their eahiti
on unrelated problems, leading to incorrect sohsio

iii) Reflection about the problem and the solutiofhe
students have a tendency to write an answer befo
thinking carefully about it. Many times testingdsne .
superficially and they get satisfied just becauke t
program works with a data set, without making more
extensive testing.

Coimbra, Portugal

iv) Lack of persistence - Students often give ulviag

a problem if they don’t quickly find a possible stbn.
Usually, solving programming problems demands éffor
and persistence. However, when facing any diffiult
many students prefer to ask the solution to a aglie

or simply give up, instead of keep trying solvirtget
problem. This is especially important, since leagnis
more effective when students find the solutiontead

of simply reading the solution.

Many students don’t have enough mathematical and
logical knowledge Gomes et al. [3] conducted some
experiments exploring the relationships between
mathematical problem solving competences and tte la
of programming abilities shown by a group of studen
that didn’'t get approved in their initial programmyi
course. This experience was carried out during the
second semester of 2005/2006 and the authors
concluded that the involved students had deep
difficulties in several areas, such as basic cakuand
number theory or simple geometric and trigonometric
concepts. The authors also report difficulties in
transforming a textual problem into a mathematical
formula that solves it. Limitations in abstractitevel
and logical reasoning were also identified.

We think that mathematical knowledge is very impott

for programming and it is possible to find stud{gy,

for example) that evidence some relationship betwee
programming skills and experience in mathematics.
Students lack specific programming expertiseMany
students’ programming difficulties are also caussd
programming specific errors and misconceptions.
Sometimes we find students that don't know how
common programming structures work or have
misconceptions about them. It is also common that
students demonstrate difficulties to detect simple
syntactical and logical programming errors.

V. The nature of programming

Programming demands a high level of abstraction
Programming learning requires skills like abstiatti
generalization, transfer and critical thinking, amo
others. Experience has also shown that the problem
starts, in general, in the initial learning phaséien
students are expected to understand and applyircerta
abstract programming concepts, like control stmesu

to solve problems.

Programming languages have a very complex syntax
Programming languages were developed for
professional use and not to support learning. Commo
languages are extensive and have many complex
syntactic details to memorize. That complexity ez
that students have to concentrate simultaneously in
algorithm construction and syntactic rules.

r\é' Psychological Effects

Students don’t have motivation Many students don’t
have enough motivation to study programming, bezaus
there is an extremely negative connotation assegtiat
with programming that passes from student to studen
There is the public image of a "programmer" as a

September 3 — 7, 2007

International Conference on Engineering Education 4CEE 2007

socially inadequate "nerd" [2]. Additionally,
programming courses acquire the reputation of being
difficult. So, it is hard to imagine students asmrto
this image. If students approach a course with an
expectation that it will be difficult, and with agative
image of those who excel in the subject, it is Vieayd
to imagine them as being especially motivated. And
students who don’t have an intrinsic motivation | wil
hardly succeed. [5]. .
e Students have to learn programming in a difficult
period of their life. Programming is normally taught as
a basic subject in the beginning of a higher edoat
course, coinciding with a period of transition and
instability in the student’s life. Some authors sider
that programming disciplines are badly located hia t
curriculum, because this is a time of many difficd
and novelties to a new and autonomous life. The tyfp
subject is already difficult enough when students a
stable so, when placed in a period of transitias tian
only contribute to an increase in difficulty [2].

OUR PROPOSAL

How to solve or at least minimize each of the above
discussed difficulties? In our view, this can behiaged
through the development and utilization of a corapahal
environment that may support students effectivéty.reach
this general objective it is necessary to defineictvh
characteristics are necessary to help in eacheofigntioned
problems.

e Asteaching is not personalizedhe environment needs
to provide permanent student supervision. The ideal
situation would be to have a tutor to follow stuten
evolution, clarify doubts, and propose problems and
activities. Another important role of the tutor ie
prevent situations that may lead students to gweowu
lose motivation. A computational tutor may be
beneficial in the sense that it won't show negative
sentiments and will always show some tolerance! @ine
the teacher’s roles is to motivate students. Howeve
sometimes this is not easy and motivation lackisath
parts. Although a computational tutor cannot conghje
replace a human tutor, we believe it can contrikiate
captivate the students’ attention, keeping theerasted
and allowing them to do the activities without
inhibitions! .

« Teachers' strategies don't support all students’
learning styles. The environment must adapt activities
to each student preferential learning style. Tkin be
done having different presentation formats to each
activity and adapting interaction strategies toshalent
characteristics. The first time students access the
environment they will be asked to register and dill
questionnaire that allows the identification of ttha
particular student learning style. There are déffer
models for this purpose, for example “The MyersgBs
Type Indicator (MBTI)" [6], “The Kolb’'s Learning
Style Model” [7], and “The Felder-Silverman Leargin
Style Model” [8]. The later is widely used and edsy
implement in a computational platform. As its onigi

Coimbra, Portugal

are in the engineering field, we believe it is aodo
choice for our environment.

The teaching of dynamic concepts is usually made
through static material. The environment includes
dynamic computational models representing
programming concepts. However these models should
be in accordance with the preferential learnindestf

the student.

Teachers are sometimes more concentrated on
teaching a programming language and its syntactic
details, instead of promoting problem solving using
programming language. The environment includes
multimedia tools focused on problem solving and
algorithm development. Algorithms can then be
implemented in any common programming language.
Progress through the different types of problemstrbe
gradual and progressive. In a first phase the probl
are simple and have some playful dimension to ttra
and stimulate students. Gradually problems progress
more specific domains towards typical programming
problems. Each new problem presented to the student
demands more elaborated solutions, involving more
detailed procedures. The main idea consists in
promoting and evaluating the student’'s progress,
through a stimulating and attractive system.

Students often use incorrect study methodologiesnd
don’t work hard enough to achieve success in this
type of discipline. To help in this area the environment
must be attractive and include activities that nmagrest
students. It has many practical problem solving
activities, giving students the possibility to pree with

a lot of diversified activities. Programming is tjptem
solving intensive" [9] requiring a significant amuwf
effort and different skills. So it is very importaio give
students opportunities to practice a lot. It isoals
important that after concluding an activity the
environment provides additional questions or attigi

to make sure that the student understood the soluti
completely. That will allow students to reflect treir
solutions and how they could be improved. Thisns a
important activity that students rarely do. These
consolidation/reflection questions can be of sdvera
types, for example including textual questionspbieal
representations, and simulations involving somea dat
changes.

As Students don't know how to solve problemghe
environment includes many problems in accordance
with the non computational model proposed in [10].
This environment must incorporate the following
characteristics:

i) For each problem, the environment must verifgtth
the student understood what was asked. This can be
verified, for example, asking the students whatitipeit

is and output data for the problem or asking them t
predict the new output after some changes madketo t
problem.

i) The problems proposed have an increasing difific
level maintaining, when possible, some connectiith w
previous problems. At least the new problems should
maintain some concepts needed to solve some ssbtask

September 3 — 7, 2007

International Conference on Engineering Education 4CEE 2007

in previous problems. So, if the environment detéicat
the student isn't able to solve the current agtiititcan
give hints, such as dividing the problem and cotingc
some of the parts with problems previously solvgd b
the same student. Alternatively, it can also prepos
simpler challenges for further practice.

iii) When the student proposes a solution to aiqagr
problem, she/he will have to face a set of question -«
mini-activities in order to reflect on the proposed
solution. These activities may include, for examppie
adaptation of the student solution, so that it woakso

to some variation of the original problem.

iv) Integrating mechanisms that prevent the stuglent
from giving up solving problems. This objective is
pursued through a lot of interactivity with the dut,
generating adequate feedback, whenever it is n@gess
The idea is to motivate and encourage them to icoati
trying to solve the problem. This can be done in
different ways. For instance, after a long peridd 0.
student’s inactivity, the environment can presem t
complete solution, asking questions about it.
Alternatively, students can be asked to discoveneso
errors on a presented solution or to complete fdrém
incomplete solution. The system can also suggest
smaller challenges, based on the problem, making it
easier to solve. .
Many students don’t have enough mathematical and
logical knowledge.The environment includes a set of
challenges that include implicit or explicit mathesimal
concepts, especially those concepts that are ieumort
for typical programming problems.

Students lack specific programming expertiseMany
times there is a gap between generic problem gplvin
and programming problem solving. Hence it is
necessary that the environment helps students @ ma
this transition. This can be done essentially io tmays,
namely:

i) Helping and giving hints to students, teachihgm
certain aspects of programming problem solving.ddo
this the environment can present complete progfams
students to analyze. We think that the best wagadaon .
to program is trying to write programs from scratch
However, to study and to test complete programs can
help students to understand how programs work. Also
analyzing the strategies used to solve some prablem
can help students in their initial phase of leagnto
program. Another useful activity is to analyze peogs
that include logical errors usually made by student
Completing incomplete programs can also be a useful
activity in initial stages, instead of waiting fetudents

to write entire programs from the beginning. The
environment also includes programming patterns,
representing solutions of common problems in a &rm
that exemplifies good programming practices.

i) Allowing students to test their principles, trees and

The environment is based on a constructivist agroa
of learning, where each student learns at her/tis o
pace and progressively constructs her/his own
knowledge. We strongly believe, like many researghe
that this kind of approach can improve student |amb
solving abilities, as well as their critical thimig
capabilities [12].

Programming demands a high level of abstractionit

is important that the environment helps to develop
student’s abstraction capacity. For that, it inelsidrom
everyday problems to more specific problems
concerning the programming domain. It is importhat
students learn to recognize patterns in the diftere
problems, developing their generalization skills.e W
think that the non computational model proposed ®j
promotes the gradual development of students’
abstraction capacity, helping them to relate new
situations with their previous experiences.

Programming languages have very complex syntaxes.
The environment minimizes aspects inherent to
language syntaxes, emphasizing the algorithmic and
problem solving processes. In this way it creates
conditions for students to concentrate essentiaily
solutions without having to take care of complex
syntaxes.

Students don’t have motivation. We propose a
multimedia environment that includes several typés
problem solving activities. In the initial stagebet
activities will have a more playful nature, using
knowledge from diverse domains, as a way to attract
students to the environment. When the student shows
some domain of basic problems, the environment will
propose problems that demand more complex solytions
including typical programming problems. The objeeti

is not proposing problems that in a given stagetaoe
difficult for the student, eventually causing hamhto
lose motivation. It is also important to show thedents
that programming is a useful tool to ease peofe li
This can be achieved using real life problems ashhas
possible.

Students have to learn programming in a difficult
period of their life. In our opinion, programming
should be preceded by an intensive training in jerob
solving. Hence, we think that students should feliat
least a course devoted to problem solving befoey th
engage in typical programming courses. However, the
Bologna process lead to 3 years programs in many
institutions. As programming is a pre-requisitemany
other courses, it is necessary that it appeary @athe
curriculum. In this context, we think that an
environment with a strong problem solving emphasis
can help reduce this problem.

The environment described in this paper is in atiain

development phase. That is why we presented eaBgrits
specification and the reasoning behind it. As tdrenment

reasoning. The environment allows the simulation ofpbjectives are mainly pedagogical, we are condgctifew

students’ algorithms, so that they can verify paogr

experiments to help us better define its charesttesi and to

behavior and logical errors. This is done througl t more precisely identify the causes of student’§adlifties.

inclusion of the SICAS environment [11], which all®

We had already conducted some experiments [11, 14],

animated simulation of student built algorithms. trying to determine how the development of mathéraht

Coimbra, Portugal September 3 — 7, 2007

International Conference on Engineering Education 4CEE 2007

and logical problem solving abilites would impact [2]
programming capacity. In this study we could idignthany
students’ problem solving difficulties and relateemn with

their programming limitations. These results wenalgzed 3]
taking into consideration the students learninglesty
preferences. So we already have a precise iddeedfpe of
activities that should be incorporate and the waydd so)

according to the different learning styles.
However our experiments were restricted to problem

solving aspects and we did not address the wayestsd

acquire knowledge. To complement this study, we adse

(5]
analyzing common teaching and learning approacheslio
so, we collect strategies used by programming &racand
analyze how they can contribute to the developmet [g]

students’ problem solving capacity. We also plan to
investigate how to improve teaching strategies in
introductory programming courses, taking into actou [7]
students’ learning styles.

Additionally, we also intend to verify how students g
approach programming learning, how they see itonapce
for their future, how much time they dedicate
programming learning, and which activities they use
develop their programming ability, among others.thase
studies we mainly use three basic techniques, ramel
observations, interviews and questionnaires, asag t@
collect facts and evaluate attitudes.

Once completed, the environment will also be fully
evaluated, especially in pedagogical terms. It vk
necessary to see how different students use tHeretit
materials and activities and to evaluate their ichpa the
development of the student’s programming abilities.

to
(9]

(20]

(11]

CONCLUSION [12]
There are different reasons why programming legrnim
inherently difficult. The question is somewhat cdexp We
agree with some authors that say that programngggires
not a single, but a set of skills. Those skillsrica hierarchy
[13] and a programmer will be using many of thenaay
point in time. In our opinion, the most important hovice
programming students is to develop their problerviisg
abilities. So we are developing a computationaliremwment
mainly based on problem solving activities fromfaliént
domains. When the student reaches a higher congeeten
level in generic problem solving, the environmetatrts to
propose typical programming problems. We believs th
the best approach as programming education shoeld b
preceded by the development of a sound problemingplv
competence.

The environment also tries to adapt itself to epatticular
student characteristics, namely taking into cormsitien
her/his previous work and preferred learning styleen
selecting activities and interaction modes that b used
with that particular student.

(23]

(14]

REFERENCES

[1] A. Lawrence, A. Badre and J. Stasko, “Empiricalsaating the Use
of Animations to Teach Algorithms”, iRroc. of the IEEE Symposium

on Visual Languages$t. Louis, MO, October 1994, pp. 48-54.

Coimbra, Portugal

T. Jenkins, “On the difficulty of learning to pr@gn”, in Proc. of the
3rd Annu. LTSN_ICS Cont.oughborough University, United
Kingdom, August 2002, pp. 53-58.

A. Gomes, L. Carmo, E. Bigotte and A. J. Mendesativmatics and
programming problem solving”, iRroc. of the 3rd E-Learning Conf.
— Computer Science Education (CD-RORpimbra, Portugal,
September 2006.

P. Byrne and G. Lyons, “The Effect of Student Atiies on Success
in Programming”, irProc. of ' Annu. Conf. on Innovation and
Technology in Computer Science Education - ITiICSEL2United
Kingdom, 2001, pp. 49-52.

C. Bereiter and E. Ng. “Three Levels of Goal Orégiuin in
Learning”,Journal of the Learning Science®l. 1, n° 3, pp. 243-271,
1991.

I. B. Myers and M. H. McCaulleyyanual: A Guide to the
Development and Use of the Myers-Briggs Type Indic®alo Alto,
CA: Consulting Psychologists Press, 1985.

D. A. Kolb, Learning Style Inventory: Technical ManuMcBer and
Company, Boston, 1985.

R. M. Felder and L. K. Silverman, “Learning and @leag Styles in
Engineering EducationJournal of Engineering Educatiomol. 78, n®
7, pp. 674-681, 1988.

D. N. Perkins, S. Schwartz and R. Simmons, “Instonal Strategies
for the Problems of Novice Programmers”’RnE. Mayer (ed.),
Teaching and Learning Computer Programmibgwrence Erlbaum
Associates, 1988, pp. 153-178.

C. Delgado, J. A. Xexeo, |. F. Souza, M. F. Camgnas C. E.
Rapkiewicz, “Uma Abordagem Pedagdgica para a Igémaao Estudo
de Algoritmos”,Anais do Curso de Ciéncia da Computacéd. V,

pp. 72-87, 2004.

A. Gomes and A. J. Mendes, “SICAS: Interactive exysfor algorithm
development and simulation”, in Manuel Ortega aveEBravo (ed.),
Computers and Education in an Interconnected Spdiétwer
Academic Publishers, 2001, pp. 159-166.

M. Ben-Ari, “Constructivism in Computer Science [Edtion”,
Journal of Computers in Mathematics & Science Teagtvol. 20, n°
1, pp. 45-73, 2000.

K. D. Sloane and M. C. Linn, “Instructional Condits in Pascal
Programming Classes”, in R. E. Mayer (ed8aching and learning
computer programmingd,awrence Erlbaum Associates, 1988, pp.
137-152.

L. Carmo, A. Gomes, F. Pereira and A. J. Mendesafiing styles
and problem solving strategies”, iroc. of the 3rd E-Learning Conf.
— Computer Science Education (CD-RQKbYimbra, Portugal,
September 2006.

September 3 — 7, 2007

International Conference on Engineering Education 4CEE 2007

