Educational Simulation of the RISC Processor

Marc Jaumain
BEAMS department, Bio Electro and Mechanical System
Université Libre de Bruxelles, Belgium
mjaumain@uilb.ac.be

Michel Oség Aliénor Richard, Alexis Vander Biest, Pierre Mathy$

Abstract - In the context of courses related to we explain how the simulator works and some altirea
“Architecture of microprocessors”, our educational designs of the simulator are proposed.

objective is to make students understand the inteiad

dynamic mechanism of processors. Since internal CONTEXT

measurements are not possible on such devices,

simulation is the only way. Hence, we have develogp@ur ~ Our simulator is part of the labs on microprocessor
own innovating simulator with a specific focus ontsident architecture for first year master students in teleml
interactivity. We have chosen the RiSC16 processor engineering (options electronics, telecommunicatiamd
because it is simple but complete and has been dgs#d computer science).

for educational purposes. The simulator we propose The prerequisites for this course are two previous
offers different opportunities. It allows the userto define courses of electronics and a third one about logiceuits.

its own programs in assembly language and to see The first course is an introduction to electronitsvhich the
graphically the corresponding internal dynamic students have their first contact with a microcoltér and
behaviour of the processor (interactivity). Secondi, the assembly language code. The second one focuseigjital d
visualization of the architecture of the RiSC16 is electronics: during the labs, the students program
enhanced by the use of colours which change dependi microcontroller in C language. In the course ablogical

on the activity of the different blocks. Thirdly, sepping circuits, they learn how to analyse and synthesize
instruction by instruction allows the user to visudize the combinatorial and sequential circuits.

evolution of the content of memories and registers. The aim of the course on microprocessors architedsu
Furthermore, the Java language has been chosen to to give a more advanced knowledge of the main qusde
implement our simulator. The modularity of this the discipline (instruction sets architecture, pims memory
language makes it easy to adapt to other processoasd architecture, memory management, buses ...)

let several perspectives open. The simulator has de The main difficulty in the study of microprocessor
tested in real laboratory conditions and showed tde resides in the integration itself which hides a lot
quite helpful for the students. interesting internal events. In most of the intégna

development environments coupled with debuggers (or
Index Terms — simulator, micro architecture, processor,simulators), it is possible to step at instructievel and see
RiSC-16. the content of the registers but there is no wagde the
progress of the instructions within the instructiogcle
INTRODUCTION execution. In the textbook, the successive eveittsinvthe
cycle are presented like a slide show based upmintarnal
For the majority of the students, the understandinipe architecture. Since some steps of the executionamf
internal working of a microprocessor is difficult &cquire in instruction are asynchronous and other ones ahsynous,
a textbook because of the static nature of thempsyggport. it is difficult to represent it realistically on par. Therefore,
In addition, it is not possible to illustrate thesencepts by a simulator seems to be the better tool to reptebenin an
practical lab work, since one cannot reach thematesignals interactive and dynamic way.
of the microprocessors. On the contrary, a computer

simulation allows the user to visualize the workprgcedure WHAT KIND OF PROCESSOR?
of a microprocessor and can thus improve the congmrgon
level of the students. It is now possible to vigelthe The majority of existing simulators are based oal re

execution of an instruction in details. The aimtluk text is microprocessors with complex instruction sets. T of
to present our simulator and to explain why and fiohas simulators is more aimed at people who have a good
been designed. Firstly, the paper deals with theeod in experience in the subject and want to test and gisbme
which the simulator is used, and the options ferghlection programs without having to download them in thegear
of the processor. After a brief description of fh®cessor, hardware. Some educational simulators are availafile a

! Michel Osée, BEAMS department, ULBosee@ulb.ac.be

2 Aliénor Richard, BEAMS department, ULBrichard@ulb.ac.be

3 Alexis Vender Biest, BEAMS department, UL8dbiest@ulb.ac.be
4 Prof Pierre Mathys, BEAMS department, UliBnathys@ulb.ac.be

Coimbra, Portugal September 3 — 7, 2007
International Conference on Engineering Education 4CEE 2007

basic instruction set. Both types of simulator oshow the
evolution of the registers and the memory varialtebelp
debugging the code. Such debuggers have alreadyusese .
by students in others laboratories but in our satmr| we
would like to show the internal mechanism of the
microprocessor to students who are not familiathwhe .
subject.

Two selection criteria have been considered:
architecture and the instruction set.

Concerning the architecture, the main options are A last point considered for the choice of a
Harvard type and Von Neumann type. The Von Neumanmicroprocessor is that we wanted the microprocetsdre
architecture has got a single data path to trarddém and physically implementable in hardware. This showat ih is

the display of different part of processor is easied
clearer.

the number of instructions being less than a fews,tthe
students can juggle easier with the instructionised
minimum time

the RISC instruction set is more fitted to pipeline
concept because all instructions have the samaigarc

the time

code. This leads to minimal surface of silicon aaduces
the complexity of design. The Harvard architectiras
separate data paths for data and for instructidriss
accelerates the execution because the next instnuzan be
fetched during the execution of the current ingtauic The
Von Neumann architecture has been used in generpbge
processor for personal computers, while the Hartgpé is
more used in workstations and for real-time micogpssor

not just a concept, in simulation, but that it esponds to
the real working of some processor. This bringslitiéty to
the simulator.

THE RISC-16PROCESSOR

The processor selected is the RiSC-16, which imatelyi
seemed to be an excellent candidate for this jble. RiSC-

like DSP. We have chosen to illustrate the Harvardi6, for “Ridiculously Simple Computer”, has beewveleped

architecture because we believe the separationeeeatwata
and code easier to understand for the studentsd&gghe
overlapping of execution and opcode fetch is atlthse of
the pipeline concept, which is taught in the coumse is
illustrated in a complementary simulator.

The second criterion is the complexity of the instion
set: Reduced Instruction Set Computer (RISC) oomilex
Instruction Set Computer (CISC). The latter is electarized
by a large number of instructions, in order to difpgthe
work of compilers and reduce the size of the coflee
drawback is the size of the instruction decoder #mel
variable length and execution time of the instrsi, which
is not recommended to implement an efficient pipeliThe
RISC processors have got a reduced number of aiitns,
all with the same length and same execution time.
disadvantage of this approach is that a complexabipa is
compiled in a large number of simple instructiodswever
the performances are excellent because
instructions are optimized, execute quicker thairteISC
counterpart and because pipelining works propefige
RISC architecture is the best candidate from arcaihnal
point of view for the following reasons:

« the RISC architecture is easier to understand than

CISC one because the execution is more systematic.

by Prof. Bruce Jacob at the University of Marylamith an
educational aim. There are two implementations ho$ t
architecture, a sequential one and a pipelined tmehis
paper, we just give a small description of the sedal
implementation. For more information about RiSC-1ite
reader is invited to refer the three documents:ffit]the
instruction set, [2] for the sequential implemeiatatand [3]
for pipeline implementation.

The RiSC-16 is a RISC processor based upon Harvard

architecture. As its name indicates, it is a 16 pitocessor.
All data and instructions are in two bytes, and ad,

registers and the two memories are in short-wonch&o. It is

made up of:

e one bank of eight registers, addressable in thiteeThe

A register 0 is read-only and contains the null valusich

is quite common among RISC processors

-+ separated instruction and data memories. Both are
the simple

addressable in sixteen bits, and hence have aitapéc

64Kwords.

e one Arithmetical-Logical Unit (ALU) that can exeeut
three operations: addition, bitwise nand and tefst o
equality.

« multiplexers to choose between buses.

TABLE |
INSTRUCTIONS[1]

Mnemonic| Assembly Format | Action

add add regA, regB, regC Add contents of regB with regC, store result in regA.

addi addi regA, regB, Imm Add contents of regB with Imm, store result in regA.

nand nand regA, regB, regC Nand contents of regB with regC, store results in regA.

lui lui regA, Imm Place the 10 ten bits of the 16-bit Imm into the 10 ten bits of regA, setting the bottom 6 bits of regA to zero.

S Sw regA, regB, Imm Store value from regA into memory. Memory address is formed by adding Imm with contents of regB.

Iw Iw regA, regB, Imm Load value from memory into regA. Memory address is formed by adding Imm with contents of regB.

beq beq regA, regB, Imm If the contents qf regA and regB are the same, branch to the address PC+1+Imm, where PC is the address of
the beq instruction.

jalr jalr regA, regB Branch to the address in regB. Store PC+1 into regA, where PC is the address of the jalr instruction.

Coimbra, Portugal

September 3 — 7, 2007

International Conference on Engineering Education 4CEE 2007

The students are rapidly able to master this retlses
of 8 instructions and to write small programs. Aceswd
strong point of the RiSC-16 is the small numbeindérnal
elements. This permits displaying clearly all bleakn the
screen. Furthermore, both the sequential and thelipe

being executed. version were implemented on a FPGA during a makéesis.
« an adder to compute jump addresses. This proves the validity of the concept to the stitd.

e two sign-extended logic blocs to convert the 7 bits
immediate values into the 16 bit format.

* one left shift logic to convert the 10 bits immedia
values into the 16 bit format.

e several buses to convey data between elements.

e control signals routed to the different blocs (for
example, to choose the input bus of a multiplexer).

* one control unit. Its functions are to decode theoales
and to control the ALU, the multiplexers and thatevr
function into the register bank and into data memor

e aprogram counter (PC) and its incrementer.

e an instruction register containing the instructibat is

SIMULATOR

As shown in Figure 1, the simulator displays thnéedows.
The main window is on the left and is devoted te th
elements of the processor. At the right top, wed fthe
program memory window containing the code written i
assembly format and assembled in binary machine.cbiae
Refer to Figure 1 to see how these are connected. last one, at the right bottom, is the data memonydaw.
The instruction set consists of 8 instructions. [gab This window shows the data that are produced by the
shows their assembler format and describes theiratipn. ~ Program, but also allows at the user to write his) alata
This processor illustrates the RISC philosophy pdsto its ~ anywhere in memory.
maximum of simplicity. In fact, the instructions ear All instructions are executed in one machine cy€ls
elementary, but they are powerful enough to solwaglex cycle is divided in four steps. These are succebsiv
problems, and none instruction can be replaced by a
combination of the other ones.

B RiSC 16 -~ Simulation didactique du RiSC-16 (séquentiel) --- ULB-BEAMS 2007

File Display Help | Address Content
0110011111101000 |Iui1,1000 -
0110101111101000 [Iui 2,1000 E
0110111000000000 [Iui 3,512
0101010010000011 |nand 51,3
B 45 4 0101011010000101 |nand 5,55
0101100100000011 |nand 6,2,3
! 0101101100000110 |nand 6,6,6
FCO = 0x0000 | '+1-| 1101011100001001 |beg 5,69
0111000111111 [lui 4,511
0011001000117111 |addi 4,4 53
0101010010000100 |nand 5,1,4
PROG 0101011010000101 |nand 5,55
: e 0101000100000100 |nand 4,2,4
—> MEM Siom Ext | /" R'ZGIETE_RW ; 0101001000000100 |nand 4,4,4
7 lf w- 0001011000000101 |add 5,4,5
2 T [Rl = 0x0000 0101011010000011 |nand 5,5,3
l & %' 0101011010000101 |nand 5,55
s sy 0011000000000000 |addi 4,0,0
OpCrdk 10bit Tmm Val /{Utht o JR3 = 0x0000 1101010000000001 |beq 5,01
LUT 7 R4 = ox0000 | DATA 0011000000000001 |addi 4,0,1
L . e MEM 0000110010000010 |add 3,1,2
P 0000000000000000 |
7 TGT RE = 0x0000 0000000000000000 v
& SRC2 R7 = 0x0000 i A
4 : F Assemblage
data & data | —_—
v
e Address
7 150 -
& Lefr Shifr il =
5 _*| . : : =
.‘[\/ —P| Sign Ext : o
Sy b 4 - i
CTL 5
5 0
i
Clock = 3 | HI a
0
0
0
il
0
Clock=3|high . state n° 3 = |DIRF = ML & MUBCalu 1 & MU alu 2 g
RESET I ' Clock Cycle 1 Clock Cycle Instruction 0 =

FIGURE 1
PRINT SCREEN OF THESIMULATOR

Coimbra, Portugal September 3 — 7, 2007

International Conference on Engineering Education 4CEE 2007

Instruction Fetch (IF): During this step, the pragr
memory receives the address of the instruction filoen

Buses are somewhat different because they justesonv
the data and do not process it. They can be caloure

program counter, and sends the instruction to therange and black. Black is the default colour. Qeais used

instruction register.

control unit decodes the instruction, sends theaijosn
code to the arithmetical-logical units and the agddrbits
required to select source and target registers.
Execution (EX): The arithmetical-logical unit reees
the operands and executes the operation.

Write Back (WB): The result is stored in its targetd
the program counter receives the new address ftem i
input multiplexer.

A relevant functionality of the simulator is thecfahat
the processor behaviour can be simulated with thiree
scales:
by half clock cycle, which is the smaller intervahis
simulation mode enables the description of theriate
processor mechanism in its lower details.
by clock cycle. This mode enables seeing the sifte
processor at the end of each clock (=micro) cythe
simulation is less detailed, but faster.
by instruction. This corresponds to traditionaltaafe
simulators. It shows the state of the differentistegs
and the data memory at the end of each instructios.
useful for the study of the assembly language.

for buses that convey information until the nexéneént

Instruction Decode and Register Fetch (ID/RF): Thebegins processing the data. Control signals atedjaplayed

when they are active, in red dotted lines. A lagber is used
for highlighting a register (of bank) the value which has
been changed.

Transitional Stable « Has been
I | used»

Element n >< : :
! |
' |
Element n+1 : >< :
' [

Transitional Stable

FIGURE 2

THE DIFFERENTSTATES AND ITSCOLOUR OF ANELEMENT

In half clock cycle scale, the successive asynakuen
events within this interval are represented likeideo in
which the elements change their colour accordingh&ir
state. The user can choose between the three mays, the
one that is more adapted to his level.

The user has the possibility to change the fornfat o

The majority of elements run in an asynchronousvalue being displayed in the program counter aryister
manner. It means that between elements, there is nwank. Options are decimal, signed decimal, hexatcand

intermediate register controlled by a clock or antoml
signal. On the other hand, the control unit is $yonized
with the clock, and, the program counter, the tegibank
and the data memory are synchronized with confgriads
for the write-back operations. Globally, there
synchronization at the instruction level becauséhefWrite
control signal of the program counter.

In order to highlight the elements that are workitige
simulator uses a colour code. For all elementsgxbuses),
three colours are coding the different states:

is

(depending on the block) is stable at the input$ the
block is processing it. Hence this state is trémsitl. A

binary format. Another function of the simulator ike
possibility to save and to import the contents afadand
program memory. The contents are saved in texs fifet
can be easily modified.

The Java language has been chosen to implement the
simulator. The choice of an object oriented languags

justified by its modularity that enables adaptihg simulator

for other processors or a pipeline version. Eaemeht of
the processor was implemented in a class. Thesalysone
class called “SequentialDesign” for this simulatdhat

Green means that the block is busy: data or addresgontains an object of each element, and that dikpatto it

the clock signal at each click on one of buttorisisTmeans
that to add a new element (like a shifter, for anse), we

good example is the access time of the Prograrfave just to implement it and connect it to theesuss this

Memory. Such state does not exist for buses.

block has finished its processing and data is abhilat
the outputs. This state can be described as stable.
Default colour: this colour is used for two states,
"default" state and "has been used" state. "Défatdte
means that the element did not yet receive reledats
for the current instruction. "Has been used" stagans
that the data produced by this block has been taken
account by the next block and will play no moreerfdr
the current instruction.

Figure 2
corresponding colour of an element. The continulbness
represent the bus at the output of the considdesdest.

Coimbra, Portugal

simulator was in major part implemented by studédising

Orange: this state always follows the previous one. The2 Project in Master 1), Java has been preferredusecit is

known by the majority of students of different apis.
Furthermore, it can use a large library of graphitgects.

This first version of the simulator has been usedur
lab since the last academic year. Two four howaslhave
been dedicated to the simulator. For the first tab,students
begin by observing the detailed mechanism of all
instructions. After, they have to program an additiof
unsigned numbers with carry detection. Writing thisall
program, they can realize that the more we redine t
instruction set, the more we have to combine them t

illustrates the different states and theproduce higher level instructions and they are onéd to

assembly programming. An example of this code is
displayed in the program memory window of Figurénithe
second lab, guided by some programming exercises; t

September 3 — 7, 2007

International Conference on Engineering Education 4CEE 2007

have to propose instruction set and hardware ingmants
to accelerate the processor (e.g. logical and rastital
shift). They have also to think about the way @nsform
this version of RISC16 into a synchronous procesand
what are the consequences in terms of silicon sairéand

ACKNOWLEDGMENT

We would like to thank to Q. Monneaux and D. Créss
their contribution to the project.

clocking of the processor.

REFERENCES
PROSPECT
[1] Jacob, B., "The RiSC-16 Instruction-Set ArchiteetUENEE 446:
Digital Computer Design, Fall 2000. Available :
http://www.ece.umd.edu/~blj/RiSC/RiSC-isa.pdf

Jacob, B., "RiSC-16 Sequential Implementati&NEE 446: Digital
Computer Design, Fall 2000. Available :
http://www.ece.umd.edu/~blj/RiSC/RiSC-seq.pdf

Jacob, B., "The Pipelined RiSC-1&NEE 446: Digital Computer
Design, Fall 2000. Available :
http://www.ece.umd.edu/~blj/RiSC/RiSC-pipe.pdf

A second version of the sequential simulator igreparation

to make it more interactive and to improve the aimation

of the elements that are actually working withine th [2]
instruction. The first stage is to allow the usechoose if he
wants to see the time interval during which asyonbus
events occur like a video or like a slide-show with[3]
intermediate clicks. This involves adding a tempards to
situate the time within the clock cycle. Figure ®¥eg an
example of such axis.

IR ID/RF EXE WE

T I 1 T

FIGURE 3
EXAMPLE OF TEMPORAL AXIS

Since some elements of the processor are asynakspno
the elements that have got stable data at theutigp into
the busy state and are displayed in green, evieiif output
data are not used for the instruction. To resdig problem,
two new states and colours should be introducee fonthe
busy state without useful data and one for theletatate
without useful data.

Other versions of this processor are also planmed t
allow the students to compare different architextuof
MiCcroprocessors.

e an advanced version with more registers in the bank
enrichment of the instruction set, more logicaldiion
for ALU...

e asynchronous version.

A last considered version is the pipeline impleragan.
The students will thus have the occasion:
e to understand the pipeline principle that is notiobs,
e to compare it with the sequential implementation,
* to observe different pipeline hazards and how teeso
them.

CONCLUSIONS

After one academic year of use, the simulator hesnb
proven to be very helpful for students to learn MiAtérnal
mechanism. Compared to an ex-cathedra course and
textbooks, they appreciate the ability to see eveuttheir
own rate and make their own experiments. The aatyadct
on student marks should still be demonstrated Hyrcad
statistical analyse. The feedback from the studkatsalso
underlined some improvement to bring, and has damswv
questions leading to alternatives versions of thecessor.
These variants will be easily implemented thanksthe
modularity of the program.

Coimbra, Portugal September 3 — 7, 2007

International Conference on Engineering Education 4CEE 2007

