
Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

Educational Simulation of the RiSC Processor

Marc Jaumain
BEAMS department, Bio Electro and Mechanical Systems,

Université Libre de Bruxelles, Belgium
mjaumain@ulb.ac.be

Michel Osée1, Aliénor Richard 2, Alexis Vander Biest 3, Pierre Mathys 4

1 Michel Osée, BEAMS department, ULB, mosee@ulb.ac.be
2 Aliénor Richard, BEAMS department, ULB, arichard@ulb.ac.be
3 Alexis Vender Biest, BEAMS department, ULB, avdbiest@ulb.ac.be
4 Prof Pierre Mathys, BEAMS department, ULB, pmathys@ulb.ac.be

Abstract - In the context of courses related to
“Architecture of microprocessors”, our educational
objective is to make students understand the internal
dynamic mechanism of processors. Since internal
measurements are not possible on such devices,
simulation is the only way. Hence, we have developed our
own innovating simulator with a specific focus on student
interactivity. We have chosen the RiSC16 processor
because it is simple but complete and has been designed
for educational purposes. The simulator we propose
offers different opportunities. It allows the user to define
its own programs in assembly language and to see
graphically the corresponding internal dynamic
behaviour of the processor (interactivity). Secondly, the
visualization of the architecture of the RiSC16 is
enhanced by the use of colours which change depending
on the activity of the different blocks. Thirdly, stepping
instruction by instruction allows the user to visualize the
evolution of the content of memories and registers.
Furthermore, the Java language has been chosen to
implement our simulator. The modularity of this
language makes it easy to adapt to other processors and
let several perspectives open. The simulator has been
tested in real laboratory conditions and showed to be
quite helpful for the students.

Index Terms – simulator, micro architecture, processor,
RiSC-16.

INTRODUCTION

For the majority of the students, the understanding of the
internal working of a microprocessor is difficult to acquire in
a textbook because of the static nature of the paper support.
In addition, it is not possible to illustrate these concepts by
practical lab work, since one cannot reach the internal signals
of the microprocessors. On the contrary, a computer
simulation allows the user to visualize the working procedure
of a microprocessor and can thus improve the comprehension
level of the students. It is now possible to visualize the
execution of an instruction in details. The aim of this text is
to present our simulator and to explain why and how it has
been designed. Firstly, the paper deals with the context in
which the simulator is used, and the options for the selection
of the processor. After a brief description of the processor,

we explain how the simulator works and some alternative
designs of the simulator are proposed.

CONTEXT

Our simulator is part of the labs on microprocessor
architecture for first year master students in electrical
engineering (options electronics, telecommunications and
computer science).

The prerequisites for this course are two previous
courses of electronics and a third one about logical circuits.
The first course is an introduction to electronics in which the
students have their first contact with a microcontroller and
assembly language code. The second one focuses on digital
electronics: during the labs, the students program a
microcontroller in C language. In the course about logical
circuits, they learn how to analyse and synthesize
combinatorial and sequential circuits.

The aim of the course on microprocessors architecture is
to give a more advanced knowledge of the main concepts in
the discipline (instruction sets architecture, pipeline, memory
architecture, memory management, buses …)

The main difficulty in the study of microprocessor
resides in the integration itself which hides a lot of
interesting internal events. In most of the integrated
development environments coupled with debuggers (or
simulators), it is possible to step at instruction level and see
the content of the registers but there is no way to see the
progress of the instructions within the instruction cycle
execution. In the textbook, the successive events within the
cycle are presented like a slide show based upon the internal
architecture. Since some steps of the execution of an
instruction are asynchronous and other ones are synchronous,
it is difficult to represent it realistically on paper. Therefore,
a simulator seems to be the better tool to represent this in an
interactive and dynamic way.

WHAT K IND OF PROCESSOR?

The majority of existing simulators are based on real
microprocessors with complex instruction sets. This type of
simulators is more aimed at people who have a good
experience in the subject and want to test and debug some
programs without having to download them in the target
hardware. Some educational simulators are available with a

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

basic instruction set. Both types of simulator only show the
evolution of the registers and the memory variables to help
debugging the code. Such debuggers have already been used
by students in others laboratories but in our simulator, we
would like to show the internal mechanism of the
microprocessor to students who are not familiar with the
subject.

Two selection criteria have been considered: the
architecture and the instruction set.

Concerning the architecture, the main options are
Harvard type and Von Neumann type. The Von Neumann
architecture has got a single data path to transfer data and
code. This leads to minimal surface of silicon and reduces
the complexity of design. The Harvard architecture has
separate data paths for data and for instructions. This
accelerates the execution because the next instruction can be
fetched during the execution of the current instruction. The
Von Neumann architecture has been used in general purpose
processor for personal computers, while the Harvard type is
more used in workstations and for real-time microprocessor
like DSP. We have chosen to illustrate the Harvard
architecture because we believe the separation between data
and code easier to understand for the students. Besides, the
overlapping of execution and opcode fetch is at the base of
the pipeline concept, which is taught in the course and is
illustrated in a complementary simulator.

The second criterion is the complexity of the instruction
set: Reduced Instruction Set Computer (RISC) or a Complex
Instruction Set Computer (CISC). The latter is characterized
by a large number of instructions, in order to simplify the
work of compilers and reduce the size of the code. The
drawback is the size of the instruction decoder and the
variable length and execution time of the instructions, which
is not recommended to implement an efficient pipeline. The
RISC processors have got a reduced number of instructions,
all with the same length and same execution time. A
disadvantage of this approach is that a complex operation is
compiled in a large number of simple instructions. However
the performances are excellent because the simple
instructions are optimized, execute quicker than their CISC
counterpart and because pipelining works properly. The
RISC architecture is the best candidate from an educational
point of view for the following reasons:
• the RISC architecture is easier to understand than the

CISC one because the execution is more systematic.

• the display of different part of processor is easier and
clearer.

• the number of instructions being less than a few tens, the
students can juggle easier with the instruction set in a
minimum time

• the RISC instruction set is more fitted to pipeline
concept because all instructions have the same execution
time

A last point considered for the choice of a

microprocessor is that we wanted the microprocessor to be
physically implementable in hardware. This shows that it is
not just a concept, in simulation, but that it corresponds to
the real working of some processor. This brings credibility to
the simulator.

THE RISC-16 PROCESSOR

The processor selected is the RiSC-16, which immediately
seemed to be an excellent candidate for this job. The RiSC-
16, for “Ridiculously Simple Computer”, has been developed
by Prof. Bruce Jacob at the University of Maryland with an
educational aim. There are two implementations of this
architecture, a sequential one and a pipelined one. In this
paper, we just give a small description of the sequential
implementation. For more information about RiSC-16, the
reader is invited to refer the three documents: [1] for the
instruction set, [2] for the sequential implementation and [3]
for pipeline implementation.

The RiSC-16 is a RISC processor based upon Harvard
architecture. As its name indicates, it is a 16 bits processor.
All data and instructions are in two bytes, and so, all
registers and the two memories are in short-word format. It is
made up of:
• one bank of eight registers, addressable in three bits. The

register 0 is read-only and contains the null value, which
is quite common among RISC processors

• separated instruction and data memories. Both are
addressable in sixteen bits, and hence have a capacity of
64Kwords.

• one Arithmetical-Logical Unit (ALU) that can execute
three operations: addition, bitwise nand and test of
equality.

• multiplexers to choose between buses.

 TABLE I
INSTRUCTIONS [1]

Mnemonic Assembly Format Action

add add regA, regB, regC Add contents of regB with regC, store result in regA.

addi addi regA, regB, Imm Add contents of regB with Imm, store result in regA.

nand nand regA, regB, regC Nand contents of regB with regC, store results in regA.

lui lui regA, Imm Place the 10 ten bits of the 16-bit Imm into the 10 ten bits of regA, setting the bottom 6 bits of regA to zero.

sw sw regA, regB, Imm Store value from regA into memory. Memory address is formed by adding Imm with contents of regB.

lw lw regA, regB, Imm Load value from memory into regA. Memory address is formed by adding Imm with contents of regB.

beq beq regA, regB, Imm If the contents of regA and regB are the same, branch to the address PC+1+Imm, where PC is the address of
the beq instruction.

jalr jalr regA, regB Branch to the address in regB. Store PC+1 into regA, where PC is the address of the jalr instruction.

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

• one control unit. Its functions are to decode the opcodes
and to control the ALU, the multiplexers and the write
function into the register bank and into data memory.

• a program counter (PC) and its incrementer.
• an instruction register containing the instruction that is

being executed.
• an adder to compute jump addresses.
• two sign-extended logic blocs to convert the 7 bits

immediate values into the 16 bit format.
• one left shift logic to convert the 10 bits immediate

values into the 16 bit format.
• several buses to convey data between elements.
• control signals routed to the different blocs (for

example, to choose the input bus of a multiplexer).

Refer to Figure 1 to see how these are connected.
The instruction set consists of 8 instructions. Table I

shows their assembler format and describes their operation.
This processor illustrates the RISC philosophy pushed to its
maximum of simplicity. In fact, the instructions are
elementary, but they are powerful enough to solve complex
problems, and none instruction can be replaced by a
combination of the other ones.

The students are rapidly able to master this reduced set
of 8 instructions and to write small programs. A second
strong point of the RiSC-16 is the small number of internal
elements. This permits displaying clearly all blocks on the
screen. Furthermore, both the sequential and the pipeline
version were implemented on a FPGA during a master thesis.
This proves the validity of the concept to the students.

SIMULATOR

As shown in Figure 1, the simulator displays three windows.
The main window is on the left and is devoted to the
elements of the processor. At the right top, we find the
program memory window containing the code written in
assembly format and assembled in binary machine code. The
last one, at the right bottom, is the data memory window.
This window shows the data that are produced by the
program, but also allows at the user to write his own data
anywhere in memory.

All instructions are executed in one machine cycle. This
cycle is divided in four steps. These are successively:

FIGURE 1
PRINT SCREEN OF THE SIMULATOR

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

• Instruction Fetch (IF): During this step, the program
memory receives the address of the instruction from the
program counter, and sends the instruction to the
instruction register.

• Instruction Decode and Register Fetch (ID/RF): The
control unit decodes the instruction, sends the operation
code to the arithmetical-logical units and the address bits
required to select source and target registers.

• Execution (EX): The arithmetical-logical unit receives
the operands and executes the operation.

• Write Back (WB): The result is stored in its target and
the program counter receives the new address from its
input multiplexer.

A relevant functionality of the simulator is the fact that

the processor behaviour can be simulated with three time
scales:
• by half clock cycle, which is the smaller interval. This

simulation mode enables the description of the internal
processor mechanism in its lower details.

• by clock cycle. This mode enables seeing the state of
processor at the end of each clock (=micro) cycle. The
simulation is less detailed, but faster.

• by instruction. This corresponds to traditional software
simulators. It shows the state of the different registers
and the data memory at the end of each instruction. It is
useful for the study of the assembly language.

The majority of elements run in an asynchronous

manner. It means that between elements, there is no
intermediate register controlled by a clock or a control
signal. On the other hand, the control unit is synchronized
with the clock, and, the program counter, the register bank
and the data memory are synchronized with control signals
for the write-back operations. Globally, there is
synchronization at the instruction level because of the Write
control signal of the program counter.

In order to highlight the elements that are working, the
simulator uses a colour code. For all elements (except buses),
three colours are coding the different states:
• Green means that the block is busy: data or address

(depending on the block) is stable at the inputs and the
block is processing it. Hence this state is transitional. A
good example is the access time of the Program
Memory. Such state does not exist for buses.

• Orange: this state always follows the previous one. The
block has finished its processing and data is available at
the outputs. This state can be described as stable.

• Default colour: this colour is used for two states,
"default" state and "has been used" state. "Default" state
means that the element did not yet receive relevant data
for the current instruction. "Has been used" state means
that the data produced by this block has been taken into
account by the next block and will play no more role for
the current instruction.

Figure 2 illustrates the different states and the

corresponding colour of an element. The continuous lines
represent the bus at the output of the considered element.

Buses are somewhat different because they just convey
the data and do not process it. They can be coloured in
orange and black. Black is the default colour. Orange is used
for buses that convey information until the next element
begins processing the data. Control signals are just displayed
when they are active, in red dotted lines. A last colour is used
for highlighting a register (of bank) the value of which has
been changed.

FIGURE 2
THE DIFFERENT STATES AND ITS COLOUR OF AN ELEMENT

In half clock cycle scale, the successive asynchronous

events within this interval are represented like a video in
which the elements change their colour according to their
state. The user can choose between the three play speeds, the
one that is more adapted to his level.

The user has the possibility to change the format of
value being displayed in the program counter and register
bank. Options are decimal, signed decimal, hexadecimal and
binary format. Another function of the simulator is the
possibility to save and to import the contents of data and
program memory. The contents are saved in text files that
can be easily modified.

The Java language has been chosen to implement the
simulator. The choice of an object oriented language was
justified by its modularity that enables adapting the simulator
for other processors or a pipeline version. Each element of
the processor was implemented in a class. There is only one
class called “SequentialDesign” for this simulator, that
contains an object of each element, and that dispatches to it
the clock signal at each click on one of buttons. This means
that to add a new element (like a shifter, for instance), we
have just to implement it and connect it to the buses. As this
simulator was in major part implemented by students (during
a project in Master 1), Java has been preferred because it is
known by the majority of students of different options.
Furthermore, it can use a large library of graphical objects.

This first version of the simulator has been used in our
lab since the last academic year. Two four hours’ labs have
been dedicated to the simulator. For the first lab, the students
begin by observing the detailed mechanism of all
instructions. After, they have to program an addition of
unsigned numbers with carry detection. Writing this small
program, they can realize that the more we reduce the
instruction set, the more we have to combine them to
produce higher level instructions and they are confronted to
assembly programming. An example of this code is
displayed in the program memory window of Figure 1. In the
second lab, guided by some programming exercises, they

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

have to propose instruction set and hardware improvements
to accelerate the processor (e.g. logical and arithmetical
shift). They have also to think about the way to transform
this version of RISC16 into a synchronous processor, and
what are the consequences in terms of silicon surface and
clocking of the processor.

PROSPECT

A second version of the sequential simulator is in preparation
to make it more interactive and to improve the visualization
of the elements that are actually working within the
instruction. The first stage is to allow the user to choose if he
wants to see the time interval during which asynchronous
events occur like a video or like a slide-show with
intermediate clicks. This involves adding a temporal axis to
situate the time within the clock cycle. Figure 3 gives an
example of such axis.

FIGURE 3

EXAMPLE OF TEMPORAL AXIS

Since some elements of the processor are asynchronous,
the elements that have got stable data at their input go into
the busy state and are displayed in green, even if their output
data are not used for the instruction. To resolve this problem,
two new states and colours should be introduced, one for the
busy state without useful data and one for the stable state
without useful data.

Other versions of this processor are also planned to
allow the students to compare different architectures of
microprocessors.
• an advanced version with more registers in the bank, an

enrichment of the instruction set, more logical function
for ALU...

• a synchronous version.

A last considered version is the pipeline implementation.

The students will thus have the occasion:
• to understand the pipeline principle that is not obvious,
• to compare it with the sequential implementation,
• to observe different pipeline hazards and how to solve

them.

CONCLUSIONS

After one academic year of use, the simulator has been
proven to be very helpful for students to learn MPU internal
mechanism. Compared to an ex-cathedra course and
textbooks, they appreciate the ability to see events at their
own rate and make their own experiments. The actual impact
on student marks should still be demonstrated by a broad
statistical analyse. The feedback from the students has also
underlined some improvement to bring, and has raised new
questions leading to alternatives versions of the processor.
These variants will be easily implemented thanks to the
modularity of the program.

ACKNOWLEDGMENT

We would like to thank to Q. Monneaux and D. Cross for
their contribution to the project.

REFERENCES

[1] Jacob, B., "The RiSC-16 Instruction-Set Architecture", ENEE 446:
Digital Computer Design, Fall 2000. Available :
http://www.ece.umd.edu/~blj/RiSC/RiSC-isa.pdf

[2] Jacob, B., "RiSC-16 Sequential Implementation", ENEE 446: Digital
Computer Design, Fall 2000. Available :
http://www.ece.umd.edu/~blj/RiSC/RiSC-seq.pdf

[3] Jacob, B., "The Pipelined RiSC-16", ENEE 446: Digital Computer
Design, Fall 2000. Available :
http://www.ece.umd.edu/~blj/RiSC/RiSC-pipe.pdf

