Defining and performing experiments in virtual
laboratories

Francisco Esquembre
Departamento de Matematicas, Universidad de Mu@aanpus de Espinardo, 30071 Murcia, Spain,

fem@um.es

Sebastian Dormido-BencomoGonzalo Farias

Abstract — Our work attempts to define and implement a
generic experimentation language for conducting
automatic experiments on existing simulations. Our
objective is to be able to use a simulation, whicimay
have been created independently, as a component in
which students can perform experiments under diffeent
operating conditions. The experiments are first défied in

a high-level language and then conducted on the
simulation in an automatic way. The experimentation
language should implement conditional execution of
instructions that depend on the state of the simutan,
running multiple copies of the simulation synchronously,
and on-the-fly graphical comparison of results. Tts
paper describes the elements required by such an
experimentation language in order to provide the
flexibility required for a wide variety of experiments. We
also introduce our implementation of this languageon
the modeling tool Easy Java Simulations. Finally, &
show examples of non-trivial experiments defined ursg
this language and conducted on this software platfm.

2. Let the simulation evolve until the initial set pbiis
reached with a 5% tolerance.

Increase the set point by 50%.

Let the system evolve until the exact moment when t
level reaches the new set point with a 5% tolerance
Compute the time elapsed in step 4.

Repeat steps 1 through 5 one hundred times with
different sets of Pl parameters.

7. Conduct an analysis on the results thus obtained.

This set of actions cannot be executed trivially,iro
reasonable time, by a user interacting with the .G&ime
actions might be simply impossible without computefp.
Instead, it would be preferable that users couldnt@n a
flexible experimentation language that allowed théon
instruct the simulation to automatically run thigperiment.
This way, the virtual laboratory is treated as amplete
system in which all variables are observable, atid a
variables and the simulation’s execution itself are
controllable.

Our work defines a standard set of actions thatprder
simulation experiments should implement. We do so b

P®

oo

Index Terms — Easy Java Simulations, Experimentationdesigning an API (Application Programming Interfpoe set

Language, Experiments, Simulations, Virtual Laborias.
|. INTRODUCTION

The ultimate goal of building a simulation for artual
laboratory is that of performing interesting expeents with
the simulation. A typical definition of experimestates that
“an experiment is the process of extracting datamfra
system by exerting it through its inputs” [1]. Thlefinition

of instructions which simulations should conforminicorder
to provide standard experimentation capabilitieam8&
modeling or simulation environments already include
scripting facilities that allow users to run cemtdipes of
experiments [2]. Among them ACSL, EcosimPro, and
Dymola. For instance, Dymola’s manual states thathere
is a script facility that makes it possible to loatbdel
libraries, set parameters, set start values, stsuénd plot
variables by executing scripts”. We are inspired thgse

needs to be made more general when our experirimmtat previous experiences but have also added our own

system is a computer simulation. Indeed, in a cderpu
simulation, not only all its inputs and outputs aceessible,
but modern modeling tools even allow for a diremttcol of
the model so that its behavior can, to a certatergx be
changed in run-time. Traditionally, users of vittua
laboratories are expected to perform experiments
interacting with the simulations’ graphical useteifiace
(GUI). But this frequently poses important limitais.
Consider, for instance, a computer simulation ef 1
control of the level of a tank. An experiment fduist
simulation could consist of the following actions:
1. Set initial conditions.

requirements to create a universal, full-fledgedcd#jration
that provides more general and flexible features.

In order to test the viability of our language, Wwave
implemented it using the modeling todkasy Java
Smulations, (Ejs). Ejs is a software tool that helps create

binteractive simulations in Javp]. It has been designed

specifically to be used by scientist without spkcia
programming skills, and has proven to simplify tieation
of simulations for scientific and engineering pwes [11].
Simulations created with Ejs are complete Javaicgimns
or applets that can be distributed independentlijef Our

! Sebastian Dormido-Bencomo, Universidad Naciondtdiecacion a Distancia, Spain, sdormido@dia.uned.es
2 Gonzalo Farias, Universidad Nacional de EducaaiBistancia, Spain, gfarias@bec.uned.es

Coimbra, Portugal

September 3 — 7, 2007

International Conference on Engineering Education 4CEE 2007

goal is that these simulations implement our expentation
language.

The paper is organized as follows. Section Il ligts
requirements for our experimentation language. i&edtl
discusses the implementation of the language dairegu
Easy Java Simulations. Section IV shows two exasiiat
use our experimentation language in practice. Binal
Section V discusses the results and describesfuntork.

Il. ELEMENTS OF THE LANGUAGE

Our objective is to be able to control every aspefcta

simulation as if it were a completely observabled an
languag

controllable component. Our experimentation
should then contain the following categories ofvedats, or
instructions, in its API:

Elements to run one or more instances of a sinaulati
Elements to access variables and routines.
Elements to specify algorithms.

Elements to control the execution of the simulation
Elements for user input.

Elements to allow for comparison of results.

nmmoow»

We now discuss each of these categories in moedl.det
A. Elements to run one or more instances of a simulation

Users may want to run different simulations, or esal/
instances of the same simulation, at the sameitiroeder to
compare results among simulations. The API shohé&h t
provide an instruction to launch any simulationraseave
access to, returning a unique identifier for it.

Users should also be able to specify whether thagtw
the running simulations to execute either synchusho or
asynchronously. Synchronized simulations advandep)s
through their evolution cycle at the same pacepdrticular,
if the simulations use the same increment of timeeach
step, their internal time will remain synchronized.

B. Elements to access variables and routines

Users need to be able to read and to set the wdluke
variables of the model of a simulation at any tiffikis can
only be restricted if the simulation designer hasladred
some of the model variables as non-accessibleate)ivThe
same principle applies to routines or functionstfrods) that
the simulation defines. Users should be able tdyealstain
information about available variables and methods.

C. Elements to specify algorithms

The API should allow users to perform any require
computation. These computations can make use @blas

and methods from the simulation model, as well &s o

additional ad-hoc (local) variables defined by aserhe
language must provide for standard algorithmic troicions
to allow users to write complex algorithms, if reed.

D. Elements to control the execution of the simulation

Users may want to control the simulation executi®his
includes not only standanglay and pause instructions that
start/stop the simulation, but also instructionsrtm the
simulation until a given condition is met, such(eshuman
language): “run the simulation until the level bkttank is

Coimbra, Portugal

greater than 10". The experimentation environmémukd
then be able to pass over the control of the coemput
resources to the running simulation and wait uiié
simulation meets the given criteria and pausess thiving
control back to the experiment. Another featureunexgl is
the possibility of planning events in the futuragls as: “run
the simulation increasing the set point by 50% wieri0”.

E. Elementsfor user input

In occasions, partial results of the experiment meguire
user input. Elements in this category should allisplaying
messages or asking users to enter one or more fumer
values, choose a given option out of several offerar
confirm an action.

F. Elements to allow for comparison of results

In experiments where a simulation is run severaé$i, each
under different conditions, users will most likelyant to
store intermediate or output results in order tmpare them
at the end of the different runs of the simulatiblence, the
API should provide some kind of memory where toresto
and later retrieve, these values. Also, the APLhprovide
a means to visually compare output data from a Isitioun
produced in form of a graph. For instance, users lca
interested in comparing the plots of the evoluiiotime of
the response of a Pl control under different tuning
parameters.

Ill. IMPLEMENTATION

We chose Easy Java Simulations for our implementati
because it offers several appropriated charadtesisEjs
falls into the category of code generators, whichkes it
possible to use for our API all the constructionsvided by
a standard programming language. The fact thaisHjssed
on Java has also been crucial in our work becaubkelps
manage several instances of a simulation, or asldres
compound objects (such as graphs) in them, in gacbb
oriented way. Finally, users of Ejs can easily awp
understand, and, if necessary even modify, otheplpés
simulations, which greatly increases their obsdtimkand
controllability.

Easy Java Simulations is a modeling and authooog t
that allows specifying the model and the view for a
simulation at a very high-level of abstraction. Wée added
to Ejs the possibility of defining experiments fexisting

dsimulations by loading the XML file that describése

simulation (which may have been created by anqibeson)
and adding pages defining experiments for it. Wltea
simulation is re-generated, it adds to its standashu an
entry for each of the experiments thus defined.r&semply
select the experiment as one menu option. Wherningrthe
simulation as an applet, the experiments can asacbessed
using hyperlinks embedded in the HTML page thatt@ios
the simulation. This possibility provides a wayirtalude, in
a very natural way, the execution of experimentstlos
simulation in curricular material developed in HTNtrm.
To implement our experimentation language, we have

added to Easy Java Simulations new predefined rdstthat

September 3 — 7, 2007

International Conference on Engineering Education 4CEE 2007

provide the necessary functionality. We now desciiow
we implemented the elements in each of the categoffithe
API.

A. Elements to run one or more instances of a simulation

Our APl provides two instructions to create a rugni
instance of a simulation:

public Model runSimulation ();
public Model runSimulation (String classname);

These are instance methods of a predefined olgdetic
_simulation, which points to the simulation itself. The first
method creates and runs a copy of the simulatmm fwvhich
the experiment is started. The second method cr@at®py
of the simulation with the given class name. Evéayva
simulation is an object of a given class and sdwdesses
can be packaged together in compressed archiviesl AR
files. Users can instantiate any simulation whishini the
same JAR file as the original simulation or in artlger JAR
file included in the simulation’s class path. Ejswglations
can add JAR files to their class path using Aulelitional
Libraries field in the model editor of Ejs.

Simulations created using any of these two methodsoid _play();

appear automatically on the computer screen andbwgre
default synchronized with (we call them subordisaté the

original one. Subordinates of a simulation can beed

(made to run asynchronously) using thsénulation instance

method:

public void freeSimulation (Model subordinate);

Finally, subordinate simulations can be disposedyof
calling one of the following instance methods sifulation:

public void killSimulation (Model subordinate);
public void killAllSimulations ();

Although seldom required, a single simulation can

create more than one subordinate simulation, whaxh in
turn create their own subordinate simulations.
subordinate simulations in the same family aredbfault,
synchronized. Exiting any of them, exits all thensiations
in the family.

B. Elements to access variables and routines

Experiments are created and run as part of the hafda
simulation. This gives them direct access to thedetis
variables and methods. Both versions of tteSimulation
method described above return an object of
corresponding model class, which is an implemematf
the generic Java interfac@g.opensourcephysics.ejs.Model,
includedby default in every Ejs simulation’s JAR file. User
need to typecast this object into a local variaflghe correct
type in order to access the model’'s public varistdad
methods. The standard object-oriented “dot” medrandf
Java can then be used to address any variable thodhe
the simulation model.

Allsimulation,

I Create a subordinate instance of this simulation

MySimModel sub = (MySimModel) _simulation.runSimulation();
x=1.0; Il Sets the x variable of this simulation

action(); Il Invokes the action method of this simulation
sub.x=0.0; // Sets the x variable of the subordinate
sub.action(); // Invokes the subordinate’s action method
_play(); // Plays both simulations synchronously

C. Elements to specify algorithms

We used the fact that Ejs is a code generator ttallow
users to write any valid Java construction in tlgo@thms
of the experiments. These constructions can, apitaly
do, make use of the methods defined in our expetiatien
API. When the simulation is generated, Ejs comptles
Java code for the experiments together with the aEshe
simulation model.

D. Elementsto control the execution of the simulation

Ejs already included a set of predefined methods allow
users to control the execution of a simulation.Sehmethods
are described in the Ejs manual and feature:

I/ Plays the simulation

void _pause(); // Pauses the simulation

void _step(); // Advances by one time step

void _reset(); // Completely resets the simulation

Because experiments are run in a Java thread etitféo
that of the simulation itself, our APl has extendbis set
with the method:

void _playAndWait ();

which has a similar effect toplay in the original set, but
delays the execution of code after this instructimtil the
simulation pauses.

A simulation can be paused by either user intesactin
invocation of the _pause method included in thegioai
or by using one of the following new
instructions:

void _scheduleCondition (String conditionName);
void _scheduleEvent (String eventName);

These two methods introduce the possibility of
executing code whenever a given condition is satsfThis
code can be used to simply pause the simulatiortoor
execute other more complex actions. The paramétboth
instructions refers to an instance of one of thewne

thonstructions calledscheduled condition and scheduled

event, respectively, which can be defined using a specia
editor provided by Ejs. Both constructions consittwo
methods each. The first method determines whetlygven
condition is satisfied by the model state. The sdamethod
defines a user-defined action that will be invokekn this
condition is met.
There are some differences between both constnsctio

Scheduled conditions are determined by a methadieg a

As an example, suppose that we are running apgolean value, which is tested after every simotatitep. If

experiment from a simulation whose model is of thess
MySimModel, and which has a variable calleénd a method

the method returns taue value, the corresponding action is
executed. Scheduled events are associated to arilieof

called action. The experiment can then use constructions ofystems of ordinary differential equations (ODEsfjred by

the form:

Coimbra, Portugal

the model as part of its evolution algorithm, ang taiggered
by the change in sign of a positive function of taeiables
involved in that system of ODEs. When the functieturns

September 3 — 7, 2007

International Conference on Engineering Education 4CEE 2007

a negative value, the simulation detects the egods back
in time to find the exact instant in time when fluaction

crossed zero, and applies the event action atirik&nt. In
this sense, scheduling an event is similar to agdiew
events to the original system of ODEs in runtim#febently

to normal events, though, scheduled events (anddsiéd
conditions, as well) disable themselves automdyicahce
they take place.

E. Elements for user input

Our API provides a new predefinednput object that

and pasting drawables elements from one graphielgan
another:

void reparentDrawable(String childName,
ControlElement newParent);

Drawables is the generic name we use to refer jiectsb
which draw on graphic panel€ontrolElement is the parent
class of all graphic elements in the view of a dation
created with Ejs. This method can be used to éffelgt
display a drawable object which is originally paft and
receives data from, one simulation into the dravpagel of

the other simulation. See Experiment Il below far a

implements a simple mechanism for user input dudng example of use

experiment. This object has the following instanegthods:

int confirmMessage (String message, int type);

int selectOption (String message, String options);

boolean inputVariables (String message, String variables); We show in this section two examples of experiments
The first of these input methods is used to dis@ay created for a simulation of the Pl control of tleedl of a

message the user must acknowledge or prompt thetaise tank. The simulation’s typical behavior for defakift and Ti

IV. EXAMPLES

confirm a yes/no type question. The second methagséd
to request the user to select an option out ofraéypessible
ones. The third method displays a table in whiah tiser
needs to input a value for each of the variablesifpd by a
comma separated list of names. These names creataall
variables in the _input object whose values camelréeved
using the getter methods:

boolean getBoolean (String variable);
int getInt (String variable);

double getDouble (String variable);
String getString (String variable)
Object getObject (String variable);

The last of these getter methods can be used rievet
arrays or other Java objects with a textual repitasien. The
variables can be assigned values previously to ummrt
using the setter methods:

void setValue (String variable, boolean value);
void setValue (String variable, int value);

void setValue (String variable, double value);
void setValue (String variable, Object value);

These values will then be displayed as defaultesahy the

input table. Differently to the memory object discussed
below, variables in theinput object are cleared at the
beginning of each experiment.

F. Elements to allow for comparison of results

The APl also provides a new predefined object dalle
_memory, which can be used to store and retrieve dataewhil
running an experiment or across different experisiehhe
memory has the same setter and getter method® amptt
object, if only its variables remain accessible nfro
experiment to experiment unless its instance method

void clear ();

is explicitly invoked. Data in the memory can besdifor
post-experiments analysis.

Comparing graphs is possible thanks to the object

oriented nature of Java. Any graphical element he t
simulation view is a public object whose methodsa t&
accessed just like any other method of the sinadatiVe
have added a new instruction to our API that allewiing

Coimbra, Portugal

values of the PI controller is shown in Figure 1.

& s ancom Beli) (e |
Tank level
i 0,20
015
0,10
- 0,05 v
0,00
—_
sp 0 100 200 300 400

so=0047 Ju=2508 |p=20000 [Ti=o0800

FIGURE 1
TYPICAL RESPONSE OF THE SINGLE TANK SMULATION.

The dynamics of this single tank simulation is deieed by
the Dynamics page of ordinary differential equation (ODE)
shown in Figure 2.

PR Easy Java Simulations - SingleTank.xml E@El

O Description @ Model © View O Experiments
' Variables O Initialization ® Evolution © Constraints © Custom |[§
Frames Dynamics Control | Stop \

per second =
MAX | Indep. Var. |t Increment |t B
20 State Rate
15 |dievel
0 g7 C Te/AtMath.sgrt (Zrgemathousslevel, 0))+t low/atu ||
g &
MIN

FPS[MAY

s 1 | Sotver |Midpoint (ak.a. Euler-Richardson) || Pyt

] Autoplay Cummem‘mass balance and Bernouill's law for the single tank] |

FIGURE 2
DYNAMIC EQUATIONS OF THE SIMPLE TANK SYSTEM..

The control signal is computed in the second page of the
evolution of the model using the following code:

if (automaticMode) {

/I P + 1 action

u = Kp*(setPoint - level) + integral;

if (u<0) u=0;

/I Update integral action

integral = integral + Kp*dt/Ti * (setPoint - level);
}

September 3 — 7, 2007

International Conference on Engineering Education 4CEE 2007

which implements a digital PI action.

Changing the set point Tank level
Different Pl parameters
w

Experiments »

EXPERIMENT I. Executing a scheduled event g

Zoom »
Anti alias »

We now want to define a very simple experiment tiing T
in doubling the set point when the time equals 26€onds. -
For this, we first define a scheduled event in diedicated R D
panel of Ejs, as shown in Figure 3.

sp|

Increase Font Size

-06-04-03-02-01-0001 02 03 04 05
Decrease Font Size

Language:
Transiate

£ Scheduled Events for Experiments
Increase Set Point |

Open Ejs Model

Zero Condition ODE Page‘mmamics ‘V| Tolerance: ‘0.001 © Manual @ Automatic
eturn 200 - t; sp=0047 “u:nnun HKp:ZDDDD HT\:DEDD
= FIGURE 5
Action B - i Rt lever RUNNING EXPERIMENT | FROM THE SIMULATION INTERFACE.
setPoint = 2*setPoint;
Selecting this experiment in the menu producesehbalts of

comment|Double the set point at t = 200 5 | Figure 6.
FIGURE 3
EDITOR FOR SCHEDULED EVENTS. = Tank favel
As the code in the figure shows, the event is &igd when w1
the time exceeds the time planned for the evenD (20 o
seconds). When the simulation detects the crossing | ol | oo
condition, it goes back in time through tBgnamics ODE to am
find the exact state at instant t = 200. It theecexes the s o
event action which doubles the set point. Noticg #vents
defined using this editor are independent of evehts ——
simulation may have defined as part of its model are not © Mol ® Automatic
activated until explicitly set by arscheduleEvent instruction. oo Jorsses Jomow Jnoow
As mentioned above, scheduled events are autorhatica FIGURE 6
removed from the ODE list of events once they talkee. OUTPUT OF EXPERIMENT I.

We then turn to the panel for experiments in Ejs’
interface and create a new page with the codeadisglin
Figure 4.

When the simulation finally stops, theemory object stores
the values of the set point and the level. Thesgegacan be
used for further studies.

BB Easy Java Simulations - SingleTank.xml

O Description © Model © View @® Experiments

EXPERIMENT Il. Comparing graphic outputs

Changing the set point r Different Pl parameters |

We now want to compare the responses of the Plralont
with different Kp and Ti parameters. A simplistiolgtion
would be to run the simulation by hand twice, ofareeach
set of parameters, take snapshots of the evolgtigphs, and
then compare them looking at each graph side bg. sAd
better procedure, though, is to conduct an experinteat
automatically creates a second copy of the simanati
changes its parameters, and then runs both simogati
sesoiconmon [0 [seesees [synchronously, displaying the graph of their ressnin the

same plot. This is what the following, more elabera
experiment does:

_reset(); // Resets the simulaton

Il Creates a subordinate simulation

SingleTank subordinate = (SingleTank) _simulation.runSimulation();

subordinate.Kp = 30; // Sets the subordinate’s Kp

subordinate.Ti = 1.0; // Sets the subordinate’s Ti

java.awt.Color color = java.awt.Color.RED; // Chooses a color

/I Changes the color of the subordinate’s level trace

subordinate._view.levelTrace.getStyle().setEdgeColor(color);

Il Reparents the subordinate's level trace into the plotting panel

subordinate._view.reparentDrawable("levelTrace",
_view.getElement("plottingPanel"));

subordinate._view.dispose(); // Hides the subordinate's view

_play(); // plays both simulations

The output of this experiment is shown in Figure 7.

_scheduleEvent("IncreaseSetEoint"); // Sets the event
_reset(); // Resets the simulation
_playAndWait({); // start and wait for completion

// Store the results

_memory.setValue("Set Point Experiment 1", setPoint);
_memory.setValue("Final level Experiment 17, level);

=@ % v BEEL S @

CummemlRESpDnSE of the system to a change in the set point

FIGURE 4
DEFINITION OF EXPERIMENT I IN EJS.

If we now run the simulation the popup menu of thain
drawing panel includes an entry for the experimeSee
Figure 5. (Experiment Il defined in the next sultigecis
also displayed.)

Coimbra, Portugal September 3 — 7, 2007
International Conference on Engineering Education 4CEE 2007

(5]

am Tank level [6]
010 [7]
v 0:00 \/
SP ——— 0 50 100 150
(8]
(9]
‘ ‘OManual @Tummalic
sp=0047 Ju=223a |kp=2m000 |ri=nson
(10]
FIGURE 7
OUTPUT OF EXPERIMENT II.
IV. DISCUSSION OF RESULTS
(11]
We are in the process of using our implementatiotes$t our
initial design creating different types of experimtge of
practical use in teaching Automatic Control andeottopics [12]
(such as Physics). Our initial results show our
implementation is both simple and flexible, allogims a
great deal of control of the running simulation.eTobject-
oriented nature of Java has been crucial in making
implementation very natural. The way Easy Java &itimns [13]

lets users inspect simulations created by otheplpeand
access all its variables and methods is also ofatgre
importance to reduce to a real minimum the docuatimt
work required by the author of the original simidat

In a more general context, we think our API carthee
basis for the definition of a standard experimeotat
language to which other modeling and simulationslsto
could adhere to. This is our goal in the comingifet

The current, experimental version of Ejs that sufgpo
the features described in this paper can be dowabth&om
http://www.um.es/fem/publications/2007/Ejs070503..Aihe
experiments of Section IV are in tBéngleTank.xml file in
the_examples/Experimentdirectory.

ACKNOWLEDGMENT

This work was supported by the Spanish CICYT urgtant
DPI2004-01804 and the Autonomous Region of Madrid
CAM under grant S-0505/DP1-0391.

REFERENCES

[1] Cellier, F, "Computer System Modelingpringer-Verlag, 1991.

[2] Elmqvist, H, Mattsson, S. E., Otter, M. “MODELICA +he new
object-oriented modelling languagé&he 12th European Smulation
Multiconference, 1998, pp 16—19.

[3] Bruck, D, EImqgvist, H, Mattsson S.E. , Olsson Hyffola for Multi-
Engineering Modeling and SimulatiorProceedings of the 2™
International Modelica Conference, 2002 pp 55-1—55-8

[4] Fritzson, O, Gunnarsson, J, Jirstand, M. “MathMim@elAn
Extensible Modeling and Simulation Environment wittegrated
Graphics and Literate Programmingt.oceedings of the 2™
International Modelica Conference, 2002, pp 41—54.

Coimbra, Portugal

(14]

Esquembre, F. "Easy Java Simulaticnsoftware tool to create scientific
simulations in Java", Comp. Phys. Comm, Vol, 156, 2004, 199-204.

Esquembre, F. “Easy Java Simulations’ web site”,
http://www.um.es/fem/Ejs

Dormido, S.; Esquembre, F. “The Quadruple-Tank &scAn
Interactive Tool for Control EducationProceedings of the European
Control Conference, 2003.

S. Dormido. “Control learning: Present and futurinual Reviewsin
Control, vol. 28, 2004, pp. 115-136.

Dormido, S.; Martin, C.; Pastor, R.; Sdnchez, Squembre, F.
“Magnetic Levitation System: A Virtual Lab in Eaggva Simulation”,
Proceedings of the American Control Conference, 2004.

Martin, C.; Urquia, A.; Sanchez, J.; Dormido, Ssgéembre, F.;
Guzman, J. L.; Berenguel, M. “Interactive simulatif object-
oriented hybrid models, by combined use of EJSJa@&bimulink and
Modelica/Dymola”,Proceedings of the 18th European Smulation
Multiconference, 2004, pp. 210-215.

Sanchez, J, Dormido, S., Esquembre, F. “The legrofrcontrol
concepts using interactive tool€omp. App. ci. Eng. Vol .13, 2005,
pp 84-98.

J. Sanchez, F. Esquembre, C. Martin, S. DormidBo@nido-Canto,
R.Dormido-Canto, R. Pastor, A. Urquia. “Easy Javaufations: An
open source tool to develop interactive virtuablabories using
Matlab/Simulink”, The International Journal of Engineering
Education: Special Issue on MATLAB and Simulink in Engineering
Education, vol. 21, n° 5, 2005, pp. 798-813.

Dormido, S.; Esquembre, F.; Farias, G.; SanchéAdiling
interactivity to existing Simulink models using Fakva
Simulations”,Proceedings of the Conference Decision and Control-
European Control Conference, 2005.

R. Dormido; H. Vargas; N. Duro; J. Sanchez; S. OdoiCanto; G.
Farias; F. Esquembre; S. Dormido. “Development web-based
control laboratory for automation technicians: Thee-tank system”,
|EEE Trans on Education, (accepted), will appear in nov. 2007

September 3 — 7, 2007

International Conference on Engineering Education 4CEE 2007

