
Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

Defining and performing experiments in virtual
laboratories

Francisco Esquembre

Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30071 Murcia, Spain,
fem@um.es

Sebastián Dormido-Bencomo 1, Gonzalo Farias 2

1 Sebastián Dormido-Bencomo, Universidad Nacional de Educación a Distancia, Spain, sdormido@dia.uned.es
2 Gonzalo Farias, Universidad Nacional de Educación a Distancia, Spain, gfarias@bec.uned.es

Abstract – Our work attempts to define and implement a
generic experimentation language for conducting
automatic experiments on existing simulations. Our
objective is to be able to use a simulation, which may
have been created independently, as a component in
which students can perform experiments under different
operating conditions. The experiments are first defined in
a high-level language and then conducted on the
simulation in an automatic way. The experimentation
language should implement conditional execution of
instructions that depend on the state of the simulation,
running multiple copies of the simulation synchronously,
and on-the-fly graphical comparison of results. This
paper describes the elements required by such an
experimentation language in order to provide the
flexibility required for a wide variety of experiments. We
also introduce our implementation of this language on
the modeling tool Easy Java Simulations. Finally, we
show examples of non-trivial experiments defined using
this language and conducted on this software platform.

Index Terms – Easy Java Simulations, Experimentation
Language, Experiments, Simulations, Virtual Laboratories.

I. INTRODUCTION

The ultimate goal of building a simulation for a virtual
laboratory is that of performing interesting experiments with
the simulation. A typical definition of experiment states that
“an experiment is the process of extracting data from a
system by exerting it through its inputs” [1]. This definition
needs to be made more general when our experimentation
system is a computer simulation. Indeed, in a computer
simulation, not only all its inputs and outputs are accessible,
but modern modeling tools even allow for a direct control of
the model so that its behavior can, to a certain extent, be
changed in run-time. Traditionally, users of virtual
laboratories are expected to perform experiments by
interacting with the simulations’ graphical user interface
(GUI). But this frequently poses important limitations.

Consider, for instance, a computer simulation of the PI
control of the level of a tank. An experiment for this
simulation could consist of the following actions:
1. Set initial conditions.

2. Let the simulation evolve until the initial set point is
reached with a 5% tolerance.

3. Increase the set point by 50%.
4. Let the system evolve until the exact moment when the

level reaches the new set point with a 5% tolerance.
5. Compute the time elapsed in step 4.
6. Repeat steps 1 through 5 one hundred times with

different sets of PI parameters.
7. Conduct an analysis on the results thus obtained.

This set of actions cannot be executed trivially, or in
reasonable time, by a user interacting with the GUI. Some
actions might be simply impossible without computer help.
Instead, it would be preferable that users could count on a
flexible experimentation language that allowed them to
instruct the simulation to automatically run this experiment.
This way, the virtual laboratory is treated as a complete
system in which all variables are observable, and all
variables and the simulation’s execution itself are
controllable.

Our work defines a standard set of actions that computer
simulation experiments should implement. We do so by
designing an API (Application Programming Interface) or set
of instructions which simulations should conform to in order
to provide standard experimentation capabilities. Some
modeling or simulation environments already include
scripting facilities that allow users to run certain types of
experiments [2]. Among them ACSL, EcosimPro, and
Dymola. For instance, Dymola’s manual states that “…there
is a script facility that makes it possible to load model
libraries, set parameters, set start values, simulate, and plot
variables by executing scripts”. We are inspired by these
previous experiences but have also added our own
requirements to create a universal, full-fledged specification
that provides more general and flexible features.

In order to test the viability of our language, we have
implemented it using the modeling tool Easy Java
Simulations, (Ejs). Ejs is a software tool that helps create
interactive simulations in Java [5]. It has been designed
specifically to be used by scientist without special
programming skills, and has proven to simplify the creation
of simulations for scientific and engineering purposes [11].
Simulations created with Ejs are complete Java applications
or applets that can be distributed independently of Ejs. Our

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

goal is that these simulations implement our experimentation
language.

The paper is organized as follows. Section II lists the
requirements for our experimentation language. Section III
discusses the implementation of the language done using
Easy Java Simulations. Section IV shows two examples that
use our experimentation language in practice. Finally,
Section V discusses the results and describes further work.

II. ELEMENTS OF THE LANGUAGE

Our objective is to be able to control every aspect of a
simulation as if it were a completely observable and
controllable component. Our experimentation language
should then contain the following categories of elements, or
instructions, in its API:
A. Elements to run one or more instances of a simulation.
B. Elements to access variables and routines.
C. Elements to specify algorithms.
D. Elements to control the execution of the simulation.
E. Elements for user input.
F. Elements to allow for comparison of results.

We now discuss each of these categories in more detail.

A. Elements to run one or more instances of a simulation

Users may want to run different simulations, or several
instances of the same simulation, at the same time in order to
compare results among simulations. The API should then
provide an instruction to launch any simulation users have
access to, returning a unique identifier for it.

Users should also be able to specify whether they want
the running simulations to execute either synchronously or
asynchronously. Synchronized simulations advance (step)
through their evolution cycle at the same pace. In particular,
if the simulations use the same increment of time for each
step, their internal time will remain synchronized.

B. Elements to access variables and routines

Users need to be able to read and to set the value of the
variables of the model of a simulation at any time. This can
only be restricted if the simulation designer has declared
some of the model variables as non-accessible (private). The
same principle applies to routines or functions (methods) that
the simulation defines. Users should be able to easily obtain
information about available variables and methods.

C. Elements to specify algorithms

The API should allow users to perform any required
computation. These computations can make use of variables
and methods from the simulation model, as well as of
additional ad-hoc (local) variables defined by users. The
language must provide for standard algorithmic constructions
to allow users to write complex algorithms, if required.

D. Elements to control the execution of the simulation

Users may want to control the simulation execution. This
includes not only standard play and pause instructions that
start/stop the simulation, but also instructions to run the
simulation until a given condition is met, such as (in human
language): “run the simulation until the level of the tank is

greater than 10”. The experimentation environment should
then be able to pass over the control of the computer
resources to the running simulation and wait until the
simulation meets the given criteria and pauses, thus giving
control back to the experiment. Another feature required is
the possibility of planning events in the future, such as: “run
the simulation increasing the set point by 50% when t = 10”.

E. Elements for user input

In occasions, partial results of the experiment may require
user input. Elements in this category should allow displaying
messages or asking users to enter one or more numeric
values, choose a given option out of several offered, or
confirm an action.

F. Elements to allow for comparison of results

In experiments where a simulation is run several times, each
under different conditions, users will most likely want to
store intermediate or output results in order to compare them
at the end of the different runs of the simulation. Hence, the
API should provide some kind of memory where to store,
and later retrieve, these values. Also, the API should provide
a means to visually compare output data from a simulation
produced in form of a graph. For instance, users can be
interested in comparing the plots of the evolution in time of
the response of a PI control under different tuning
parameters.

III. IMPLEMENTATION

We chose Easy Java Simulations for our implementation
because it offers several appropriated characteristics. Ejs
falls into the category of code generators, which makes it
possible to use for our API all the constructions provided by
a standard programming language. The fact that Ejs is based
on Java has also been crucial in our work because it helps
manage several instances of a simulation, or address
compound objects (such as graphs) in them, in an object-
oriented way. Finally, users of Ejs can easily inspect,
understand, and, if necessary even modify, other people’s
simulations, which greatly increases their observability and
controllability.

Easy Java Simulations is a modeling and authoring tool
that allows specifying the model and the view for a
simulation at a very high-level of abstraction. We have added
to Ejs the possibility of defining experiments for existing
simulations by loading the XML file that describes the
simulation (which may have been created by another person)
and adding pages defining experiments for it. When the
simulation is re-generated, it adds to its standard menu an
entry for each of the experiments thus defined. Users simply
select the experiment as one menu option. When running the
simulation as an applet, the experiments can also be accessed
using hyperlinks embedded in the HTML page that contains
the simulation. This possibility provides a way to include, in
a very natural way, the execution of experiments on the
simulation in curricular material developed in HTML form.

To implement our experimentation language, we have
added to Easy Java Simulations new predefined methods that

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

provide the necessary functionality. We now describe how
we implemented the elements in each of the categories of the
API.

A. Elements to run one or more instances of a simulation

Our API provides two instructions to create a running
instance of a simulation:

public Model runSimulation ();
public Model runSimulation (String classname);

These are instance methods of a predefined object called
_simulation, which points to the simulation itself. The first
method creates and runs a copy of the simulation from which
the experiment is started. The second method creates a copy
of the simulation with the given class name. Every Java
simulation is an object of a given class and several classes
can be packaged together in compressed archives called JAR
files. Users can instantiate any simulation which is in the
same JAR file as the original simulation or in any other JAR
file included in the simulation’s class path. Ejs simulations
can add JAR files to their class path using the Additional
Libraries field in the model editor of Ejs.

Simulations created using any of these two methods
appear automatically on the computer screen and are by
default synchronized with (we call them subordinates of) the
original one. Subordinates of a simulation can be freed
(made to run asynchronously) using the _simulation instance
method:

public void freeSimulation (Model subordinate);

Finally, subordinate simulations can be disposed of by
calling one of the following instance methods of _simulation:

public void killSimulation (Model subordinate);
public void killAllSimulations ();

Although seldom required, a single simulation can
create more than one subordinate simulation, which can in
turn create their own subordinate simulations. All
subordinate simulations in the same family are, by default,
synchronized. Exiting any of them, exits all the simulations
in the family.

B. Elements to access variables and routines

Experiments are created and run as part of the model of a
simulation. This gives them direct access to the model’s
variables and methods. Both versions of the runSimulation
method described above return an object of the
corresponding model class, which is an implementation of
the generic Java interface org.opensourcephysics.ejs.Model,
included by default in every Ejs simulation’s JAR file. Users
need to typecast this object into a local variable of the correct
type in order to access the model’s public variables and
methods. The standard object-oriented “dot” mechanism of
Java can then be used to address any variable or method in
the simulation model.

As an example, suppose that we are running an
experiment from a simulation whose model is of the class
MySimModel, and which has a variable called x and a method
called action. The experiment can then use constructions of
the form:

// Create a subordinate instance of this simulation
MySimModel sub = (MySimModel) _simulation.runSimulation();
x = 1.0; // Sets the x variable of this simulation
action(); // Invokes the action method of this simulation
sub.x = 0.0; // Sets the x variable of the subordinate
sub.action(); // Invokes the subordinate’s action method
_play(); // Plays both simulations synchronously

C. Elements to specify algorithms

We used the fact that Ejs is a code generator tool to allow
users to write any valid Java construction in the algorithms
of the experiments. These constructions can, and typically
do, make use of the methods defined in our experimentation
API. When the simulation is generated, Ejs compiles the
Java code for the experiments together with the rest of the
simulation model.

D. Elements to control the execution of the simulation

Ejs already included a set of predefined methods that allow
users to control the execution of a simulation. These methods
are described in the Ejs manual and feature:

void _play(); // Plays the simulation
void _pause(); // Pauses the simulation
void _step(); // Advances by one time step
void _reset(); // Completely resets the simulation

Because experiments are run in a Java thread different to
that of the simulation itself, our API has extended this set
with the method:

void _playAndWait ();

which has a similar effect to _play in the original set, but
delays the execution of code after this instruction until the
simulation pauses.

A simulation can be paused by either user interaction, an
invocation of the _pause method included in the original
simulation, or by using one of the following new
instructions:

void _scheduleCondition (String conditionName);
void _scheduleEvent (String eventName);

These two methods introduce the possibility of
executing code whenever a given condition is satisfied. This
code can be used to simply pause the simulation or to
execute other more complex actions. The parameter of both
instructions refers to an instance of one of the new
constructions called scheduled condition and scheduled
event, respectively, which can be defined using a special
editor provided by Ejs. Both constructions consist of two
methods each. The first method determines whether a given
condition is satisfied by the model state. The second method
defines a user-defined action that will be invoked when this
condition is met.

There are some differences between both constructions.
Scheduled conditions are determined by a method returning a
boolean value, which is tested after every simulation step. If
the method returns a true value, the corresponding action is
executed. Scheduled events are associated to any of the
systems of ordinary differential equations (ODEs) defined by
the model as part of its evolution algorithm, and are triggered
by the change in sign of a positive function of the variables
involved in that system of ODEs. When the function returns

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

a negative value, the simulation detects the event, goes back
in time to find the exact instant in time when the function
crossed zero, and applies the event action at that instant. In
this sense, scheduling an event is similar to adding new
events to the original system of ODEs in runtime. Differently
to normal events, though, scheduled events (and scheduled
conditions, as well) disable themselves automatically once
they take place.

 E. Elements for user input

Our API provides a new predefined _input object that
implements a simple mechanism for user input during an
experiment. This object has the following instance methods:

int confirmMessage (String message, int type);
int selectOption (String message, String options);
boolean inputVariables (String message, String variables);

The first of these input methods is used to display a
message the user must acknowledge or prompt the user to
confirm a yes/no type question. The second method is used
to request the user to select an option out of several possible
ones. The third method displays a table in which the user
needs to input a value for each of the variables specified by a
comma separated list of names. These names create internal
variables in the _input object whose values can be retrieved
using the getter methods:

boolean getBoolean (String variable);
int getInt (String variable);
double getDouble (String variable);
String getString (String variable)
Object getObject (String variable);

The last of these getter methods can be used to retrieve
arrays or other Java objects with a textual representation. The
variables can be assigned values previously to user input
using the setter methods:

void setValue (String variable, boolean value);
void setValue (String variable, int value);
void setValue (String variable, double value);
void setValue (String variable, Object value);

These values will then be displayed as default values by the
input table. Differently to the _memory object discussed
below, variables in the _input object are cleared at the
beginning of each experiment.

F. Elements to allow for comparison of results

The API also provides a new predefined object called
_memory, which can be used to store and retrieve data while
running an experiment or across different experiments. The
memory has the same setter and getter methods as the _input
object, if only its variables remain accessible from
experiment to experiment unless its instance method:

void clear ();

is explicitly invoked. Data in the memory can be used for
post-experiments analysis.

Comparing graphs is possible thanks to the object
oriented nature of Java. Any graphical element in the
simulation view is a public object whose methods can be
accessed just like any other method of the simulation. We
have added a new instruction to our API that allows cutting

and pasting drawables elements from one graphic panel to
another:

void reparentDrawable(String childName,
 ControlElement newParent);

Drawables is the generic name we use to refer to objects
which draw on graphic panels. ControlElement is the parent
class of all graphic elements in the view of a simulation
created with Ejs. This method can be used to effectively
display a drawable object which is originally part of, and
receives data from, one simulation into the drawing panel of
the other simulation. See Experiment II below for an
example of use.

IV. EXAMPLES

We show in this section two examples of experiments
created for a simulation of the PI control of the level of a
tank. The simulation’s typical behavior for default Kp and Ti
values of the PI controller is shown in Figure 1.

FIGURE 1
TYPICAL RESPONSE OF THE SINGLE TANK SMULATION.

The dynamics of this single tank simulation is determined by
the Dynamics page of ordinary differential equation (ODE)
shown in Figure 2.

FIGURE 2

DYNAMIC EQUATIONS OF THE SIMPLE TANK SYSTEM..

The control signal u is computed in the second page of the
evolution of the model using the following code:

if (automaticMode) {
 // P + I action
 u = Kp*(setPoint - level) + integral;
 if (u<0) u = 0;
 // Update integral action
 integral = integral + Kp*dt/Ti * (setPoint - level);
}

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

which implements a digital PI action.

EXPERIMENT I. Executing a scheduled event

We now want to define a very simple experiment consisting
in doubling the set point when the time equals 200 seconds.
For this, we first define a scheduled event in the dedicated
panel of Ejs, as shown in Figure 3.

FIGURE 3

EDITOR FOR SCHEDULED EVENTS.

As the code in the figure shows, the event is triggered when
the time exceeds the time planned for the event (200
seconds). When the simulation detects the crossing
condition, it goes back in time through the Dynamics ODE to
find the exact state at instant t = 200. It then executes the
event action which doubles the set point. Notice that events
defined using this editor are independent of events the
simulation may have defined as part of its model and are not
activated until explicitly set by an _scheduleEvent instruction.
As mentioned above, scheduled events are automatically
removed from the ODE list of events once they take place.

We then turn to the panel for experiments in Ejs’
interface and create a new page with the code displayed in
Figure 4.

FIGURE 4

DEFINITION OF EXPERIMENT I IN EJS.

If we now run the simulation the popup menu of the main
drawing panel includes an entry for the experiment. See
Figure 5. (Experiment II defined in the next subsection is
also displayed.)

FIGURE 5

RUNNING EXPERIMENT I FROM THE SIMULATION INTERFACE.

Selecting this experiment in the menu produces the results of
Figure 6.

FIGURE 6

OUTPUT OF EXPERIMENT I.

When the simulation finally stops, the _memory object stores
the values of the set point and the level. These values can be
used for further studies.

EXPERIMENT II. Comparing graphic outputs

We now want to compare the responses of the PI control
with different Kp and Ti parameters. A simplistic solution
would be to run the simulation by hand twice, once for each
set of parameters, take snapshots of the evolution graphs, and
then compare them looking at each graph side by side. A
better procedure, though, is to conduct an experiment that
automatically creates a second copy of the simulation,
changes its parameters, and then runs both simulations
synchronously, displaying the graph of their responses in the
same plot. This is what the following, more elaborate,
experiment does:

_reset(); // Resets the simulaton
// Creates a subordinate simulation
SingleTank subordinate = (SingleTank) _simulation.runSimulation();
subordinate.Kp = 30; // Sets the subordinate’s Kp
subordinate.Ti = 1.0; // Sets the subordinate’s Ti
java.awt.Color color = java.awt.Color.RED; // Chooses a color
// Changes the color of the subordinate’s level trace
subordinate._view.levelTrace.getStyle().setEdgeColor(color);
// Reparents the subordinate's level trace into the plotting panel
subordinate._view.reparentDrawable("levelTrace",
 _view.getElement("plottingPanel"));
subordinate._view.dispose(); // Hides the subordinate's view
_play(); // plays both simulations

The output of this experiment is shown in Figure 7.

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

FIGURE 7
OUTPUT OF EXPERIMENT II.

IV. DISCUSSION OF RESULTS

We are in the process of using our implementation to test our
initial design creating different types of experiments of
practical use in teaching Automatic Control and other topics
(such as Physics). Our initial results show our
implementation is both simple and flexible, allowing us a
great deal of control of the running simulation. The object-
oriented nature of Java has been crucial in making our
implementation very natural. The way Easy Java Simulations
lets users inspect simulations created by other people and
access all its variables and methods is also of great
importance to reduce to a real minimum the documentation
work required by the author of the original simulation.

In a more general context, we think our API can be the
basis for the definition of a standard experimentation
language to which other modeling and simulations tools
could adhere to. This is our goal in the coming future.

The current, experimental version of Ejs that supports
the features described in this paper can be downloaded from
http://www.um.es/fem/publications/2007/Ejs070507.zip. The
experiments of Section IV are in the SingleTank.xml file in
the _examples/Experiments directory.

ACKNOWLEDGMENT

This work was supported by the Spanish CICYT under grant
DPI2004-01804 and the Autonomous Region of Madrid
CAM under grant S-0505/DPI-0391.

REFERENCES

[1] Cellier, F, "Computer System Modeling", Springer-Verlag, 1991.

[2] Elmqvist, H, Mattsson, S. E., Otter, M. “MODELICA — the new
object-oriented modelling language”, The 12th European Simulation
Multiconference, 1998, pp 16—19.

[3] Brück, D, Elmqvist, H, Mattsson S.E. , Olsson H. “Dymola for Multi-
Engineering Modeling and Simulation”. Proceedings of the 2nd
International Modelica Conference, 2002, pp 55-1—55-8

[4] Fritzson, O, Gunnarsson, J, Jirstand, M. “MathModelica. An
Extensible Modeling and Simulation Environment with Integrated
Graphics and Literate Programming”. Proceedings of the 2nd
International Modelica Conference, 2002, pp 41—54.

[5] Esquembre, F. "Easy Java Simulations: a software tool to create scientific
simulations in Java", Comp. Phys. Comm, Vol, 156, 2004, 199-204.

[6] Esquembre, F. “Easy Java Simulations’ web site”,
http://www.um.es/fem/Ejs.

[7] Dormido, S.; Esquembre, F. “The Quadruple-Tank Process: An
Interactive Tool for Control Education”, Proceedings of the European
Control Conference, 2003.

[8] S. Dormido. “Control learning: Present and future”, Annual Reviews in
Control, vol. 28, 2004, pp. 115-136.

[9] Dormido, S.; Martín, C.; Pastor, R.; Sánchez, J.; Esquembre, F.
“Magnetic Levitation System: A Virtual Lab in Easy Java Simulation”,
Proceedings of the American Control Conference, 2004.

[10] Martín, C.; Urquia, A.; Sánchez, J.; Dormido, S.; Esquembre, F.;
Guzmán, J. L.; Berenguel, M. “Interactive simulation of object-
oriented hybrid models, by combined use of EJS, Matlab/Simulink and
Modelica/Dymola”, Proceedings of the 18th European Simulation
Multiconference, 2004, pp. 210-215.

[11] Sánchez, J, Dormido, S., Esquembre, F. “The learning of control
concepts using interactive tools”. Comp. App. Sci. Eng. Vol .13, 2005,
pp 84-98.

[12] J. Sánchez, F. Esquembre, C. Martín, S. Dormido, S. Dormido-Canto,
R.Dormido-Canto, R. Pastor, A. Urquía. “Easy Java Simulations: An
open source tool to develop interactive virtual laboratories using
Matlab/Simulink”, The International Journal of Engineering
Education: Special Issue on MATLAB and Simulink in Engineering
Education, vol. 21, nº 5, 2005, pp. 798-813.

[13] Dormido, S.; Esquembre, F.; Farias, G.; Sánchez, J. “Adding
interactivity to existing Simulink models using Easy Java
Simulations”, Proceedings of the Conference Decision and Control-
European Control Conference, 2005.

[14] R. Dormido; H. Vargas; N. Duro; J. Sánchez; S. Dormido-Canto; G.
Farias; F. Esquembre; S. Dormido. “Development of a web-based
control laboratory for automation technicians: The three-tank system”,
IEEE Trans on Education, (accepted), will appear in nov. 2007

