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Abstract - The aim of this paper is threefold: (i) to a living branch of our cultural heritage is a chiale worthy
elucidate the early history of the displacement (or of the exertions of men of science, historians @imitblogists.
stiffness) method of structural analysis, (i) to daw This paper is humbly dedicated to the memory ohbeod
attention to the large body of important scientific texts Euler, on the occasion of his tercentenary.

that remain concealed behind “forgotten” languages

such as Latin, and (iii) to illustrate how the credéion and THE BIRTH OF THE DISPLACEMENT METHOD —EULER’S
early growth of a concept may be relevant to the ANALYSIS OF THE “P ROBLEM OF SUPPORTS'
teaching of engineering disciplines. We argue that

Euler's relatively unknown paper on the “problem of Historical uncertainties

supports”, written in Latin, establishes him as the
creator of the displacement method. Moreover, we shv
that the approach used to introduce the displacemen
method in typical textbooks on strength of materiad is
remarkably close to Euler’s procedure.

The displacement method is one of the fundamentgthaads
of structural analysis and is covered in every uggaluate
course in civil, mechanical or aerospace engingekivihen,
how and by whom was this method created? In a tecen
review paper [2], Samuelsson and Zienkiewicz, teading
figures in the field of computational mechanicgce the
origins of the displacement method back to Clelsstrigatise
on the theory of elasticity [3, 4], with a fleetingference to
Navier’s lecture notes of 1826 [5] (in fact, asmed out by
Pearson [6, p. 146], this matter had already beesidered
by Navier in his lectures for 1824 and in a notatdbuted
in 1825 to theSociété Philomatique de Pafig]). However,
according to Timoshenko [8, p. 36], the first treant of a
statically indeterminate problem is to be found[®}, a
paper taken from Euler’'s notebooks by Jacob Betintul
(who was presumably unaware of the existence ¢fdmg
published in German by his brother Johann Berndiilin
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Lisez Euler, lisez Euler, c’est notre maitre a tous
PIERRESMON LAPLACE

INTRODUCTION

Every teacher of science and technology is faceti thie
difficult task of deciding on the best way of preieg to his
students, for the first time, fundamental concepid methods
Lhna;z)lgirneg lg/c tr;l(;szec%?wsce%kt):lglr% n:zglolgger%t;;no?;%/fg ar 1795 — an English translation of this documentviailable
. . : in [10]. But Timoshenko does not link Euler’'s natoethe
considerable pedagogic value, since they then appeadisplacement method, and neither does Benvenuto firgt
reduced to their very core, or crystallized in specases, : Y

o - o ) uses the expression “deformation method” when di&og
yet “containing all the germs of generality” (toofe: D. Hilbert). , fop .
We illustrate this viewpoint by considering the h Clebsch’s work [11, p. 492]. Moreover, in his arsidyof the

used to introduce the displacement (or stiffnesshod of cr)r]legj cl)gr’[sllésse;r:/iﬁgu?u;gzgingﬁaSgsg:lsif &tﬁm
structural analysis in typical textbooks on stréngif answer to the “prob’Iem of supports” (what reactionsur
materials, and by showing that it is remarkablyselto the when a body is supported at more than three ndimeat
one used by Euler in his memdde pressione ponderis in points or at more than two collinear points?), loldn't be
planum cui incumbitOn the pressure exerted by a weight able to explain why the answer was corr.eE:t [11, 44-
on the plane on which it rests), presented to thB&ersburg 444]. We address these doubts in the remainéerhief
Academy on March 22, 1773, and published in thieviohg - d hat 111 trul blisheeEas th

year [1]. To do so, we first present an analysiisfingenious section, a;nh Wde. arlgue that [1] trhu Bé estg f:s € ;i €
and relatively unknown work, where we try to uniatre creator of the displacement method and the yeas B8/its

e . . birth date. But before we proceed, one further tioes
g?nlgbrfs’ s:r:]r:aa%?‘ fr\]/:nmrg'sst'n;gﬂfg?ﬁgzrg?st S;Sgrs:g remains: why is this important work so little knowsday?
mechgnics Based on this analvsis. we claim thderEu The answer lies in a combination of factors: firstit is
should be credited, in plain justice, with the tamof the | Witen in Latin, an aimost forgotten language @iestific
displacement method. We also wish to draw attertooine and engineering circles; secondly, the displacemethod

immense body of scientific literature that rematoscealed really came into its own as a tool for the analgsiskeletal
behind “forgotien” languages such as Latin — to enialagain structures, while the “problem of supports” was pertticularly

—
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relevant for engineers; thirdly, the immense builEaler’s
publications and his many other achievements ifidtls of
mathematics and mechanics might have eclipseattds

A giant leap forward — The birth of the displacetmaethod

To discuss the birth of the displacement methadt five

must decide what our present-day understandinghisf t

method is. Therefore, we begin this sub-sectiofidbyg its

distinctive features (a salutary pedagogical ezerii itself):

(i) The displacement method is applicable to thalysis
of kinematically indeterminate structural systeribe
degree of kinematical indeterminacy of the systasm i
the number of independent parameters needed toedefi
its deformed configuration. These parameters diedca
the generalized displacements.

(i) There is an equilibrium equation associatedhweach
generalized displacement.

(iif) The governing (or canonical) equations of timethod,

foundation is homogeneous, the combination of this
kinematical result with the constitutive assumptaidinear
elasticity leads to the conclusion that the forersrted by
the body in the foundation also define a singlenplaEuler
calls this hisGeneral Principle Using thisprinciple, the
three equilibrium equations are now written in teraf the
three independent parameters characterizing thne pathe
forces, which Euler takes as unknowns. This yieldsique
solution to the problem. We should also mention taler
is careful and meticulous enough to assume smaticaé
displacements, so that he can adopt linear kineaiatind
equilibrium equations.

From this brief description, we plainly see thalef's
procedure meets the basic requirements to be @resica
(specialized version of the) displacement methadloft
made for the specific problem under consideratimjeed,

(i) Euler identifies three generalized displacermemtd the
corresponding equilibrium equations; (i) he merges

with the generalized displacements as unknowns,kinematical and constitutive relations into a singtinciple;

combine equilibrium, kinematics and constitutive
equations. They are obtained by inserting the ¢atige
equations (written in stiffness format) and theckimatical
conditions into the equilibrium equations.

We add a fourth, non-fundamental, feature to tists $ince

it is intrinsic to the actual use of the method:

(iv) Once the generalized displacements are knotha,
kinematical and constitutive equations can be used
find the internal forces. This is usually refertechs the
post-processing phase.

How does Euler's memoir fit in this conceptual
framework? He tackles a very specific problem: tbét
finding the forces or pressures (the two words ased
synonymously by him) exerted by a weighting bodyan
supporting medium with a horizontal surface. If thedy
rests on three non-collinear point supports, theblem is
statically determinate, and equilibrium alone iDw@gh to
solve it. When the body rests on more than three- no
collinear supports, or on a continuous base, tlablpm
becomes statically indeterminate — equilibrium aberstions
alone are no longer enough to render a unique isplut
(From an abstract viewpoint, this amounts to
decomposition of a force along more than three lighra
directions not contained in the same plane.) Atgnapt to
arrive at a unique solution using purely staticatams is
doomed to failure — but this was not known in Eslelays,
and many tried to follow that path, as Benvenutwisally
describes in [11, pp. 447-460].

Euler, on the other hand, shows that it is possible
reach a definite solution if we (i) take into aconbuhe
deformations of the system (kinematics), and (@¢ept a
causal relationship between forces and deformation
(constitutive relation). He admits that the bodyperfectly)
rigid, but the supporting medium is flexible, anHist
according to a linearly elastic law. Kinematical
considerations tell him that the base of the bddlydefines
a single plane after deformation, and this plane
characterized by three
generalized displacements of the modern terminoltighe
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is difficult”
independent parameters — thentirely indeterminate and slipperyAt the beginning of § 4,

(i) his governing equations are obtained by itisgr this
principle into the equilibrium equations. This cdnéd use

of statics, kinematics, and constitutive assumggtintruly
remarkable. In a sense, it is a change of paradigthe
sense given by Hall [12]. One point deserves furthe
comment. Euler's unknowns are not the generalized
displacements, but the parameters defining theeptdrthe
forces. From a mathematical viewpoint, this is rer®
change of variables — we easily recognize the peatens
defining the plane of the forces as the generalized
displacements scaled by the stiffness of the fotimalaWwe
must also bear in mind that Euler’s goal is to fihd forces
exerted on the support. Therefore, he proceedsthjireo
what we call today the post-processing phase, Isypgshe
determination of the displacements. Moreover,
displacements depend on the stiffness of the fdioda
whereas the forces do not — setting up the unknagnise
did, he avoided the need to assign a definite vadughis
stiffness.

But is Euler really sure of the solution he is msipg
for the “problem of supports™? Is he able to ddserthe
path that leads him to the solution and to explaly it is
correct? According to Benvenuto, he is not [11, pp2-

the

the 444], since he writes that his solution remainsdval the

case of a rigid foundation — therefore, he doesegard the
deformable foundation as a fundamental featureotifi the

problem and the solution method he devised. Weebel
this is a misinterpretation of the Eulerian text Jettle the
question, we need to look more closely at §&4f Euler’s

memoir, where he lays down the foundational idefabi®

method. These paragraphs are at the heart of Betoien
criticism.

Reading Euler’s Latin — Did he really know whatwas
talking about?

After briefly describing an elegant geometricalusioin to the
statically determinate tripod problem (a weighttires on
three non-collinear supports), Euler attacks‘thech more
case of four supports, whose solutidseems

he introduces the notion of a deformable foundatiodeed,
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a rigid foundation precludes a unique solution tost
problem, although we must acknowledge that Eulevhese

makes such a statement explicitly:

“... we shall conceive that the plane or soil on vhite

weight rests is not so rigid that it cannot be iegsed upon,
but instead that it has been covered, so to spedtk, a

cloth, into which the feet can slightly penetrate.”

The cloth is introduced as an analogy, an imageh wit
increased visual impact to convey the fundameratibn of
a deformable soil — while the impressions on thiersay be
imperceptible, and thus hard to imagine, the deédion of
the cloth is easily visualized. Notice that Eulerefully
chooses his words: he writéguasi panno obductum”
(“covered, so to speakvith a cloth”).

Euler proceeds by postulating a linearly elastig far
the foundation:
“... it may be safely assumed that thdepth of the]
impression under each foot will be proportionalthe force
exerted on the soil and, once this principle iseqted, all
the work can be easily explained.”

Benvenuto argues that Euler seems to regard thisa®
“self-evident,” and not as a “specific hypothesioat the
behavior of material under stress” [11, pp. 443}4Bdt we
must also consider that linear elasticity is thenpdest
constitutive assumption that he may adopt in otdesolve
the problem, and Euler's eager desire to arrivaraeasy
explanation of his method is manifest throughoes#hfirst
paragraphs of the memoir.

Euler closes § 4 with the following remark:

“However, so that no one is troubled by this clgiblding
to pressure, even though we have assigned sofiméssve
may nevertheless diminish this softness as muetedske,
so that the nature of that soil on which the weigttually
rests is finally reached.”

Benvenuto’s critical appraisal of the memoir rastsnly on
his interpretation of these words. According to himhen
Euler writes‘indolem soli illius” (“the nature of that soil),

he is referring to a rigid soil, and therefore ttleth’s
softness may be diminished until it vanishes. Baote
infers from this passage that “the assumption sdfaplane

is [to Euler] only a conceptual device, useful for
understanding what happens in a rigid plane, aral th
transition from one case to the other is ruled lmommon
argument in mathematics,” a passage to the liniit fp.
444]. We cannot find in Euler’s text objective gnols for
such a conclusion. Instead, we believe that Eslegferring

to the soil‘not so rigid that it cannot be impressed upoof’
the preceding sentence, whose deformability, howeige
much smaller than that of the imaginary cloth. THesler
nowhere writes that his solution remains validhia limiting
case of zero flexibility of the soil. On the comiraa
deformable foundation is a fundamental feature athlihe
problem and the solution method he devised.
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In § 5, Euler writes:

“Let us then consider four feet, the enlsB, C, D of which
stand on the plane, and, upon bearing, penetrad¢ ¢hoth
by small distanceéa, B3, Cy, D9, which must be assumed
as infinitely small. This being laid down, firstlye pointsa,
B, v, o, like the ends of the feet, will still be located a
single plane; secondly, these small distankesBf3, Cy, D&
are taken as being proportional to the pressuresrtexi on
the soil by each foot. Therefore, if at the poitsB, C, D
we erect on the plane vertical segmehits B3, Cy, Do that
are proportional to the pressures at those poiritsjs
necessary that the points (3, vy, 8, lie on a single plane.
And this is the principle upon which we may salfeljyd our
entire investigation, all the more so because meithe idea
of that cloth nor the impressions made upon ittaken into
account any longer; indeed, these ideas were irvskdely
for the sake of aiding our reasoning.”

Euler begins this paragraph by assuming that thiécaé
displacements of the feet are very small, an hygsishthat
will allow him to linearize the equilibrium and lematical
equations, and that is physically justified by thenute
deformability of the soil. He then establistiéise principle
upon which we may safely build our entire invedtaa” In
doing so, Euler combines kinemati¢pdints a, B3, y, o, like

the ends of the feet, will still be located on g plane’)
with constitutive assumptionstifjese small distanceéa,

Bf3, Cy, Db are taken as being proportional to the pressures
exerted on the soil by each fopt’and since he is tacitly
assuming that the constant of proportionality isrgwhere
the same, he concludes that the reactions undér feat
define a plane. (In 86, Euler generalizes this Iteku a
“plane base of arbitrary figure”and calls it his‘General
Principle.”) Euler's remark at the end of 85 is again at the
heart of Benvenuto’s criticism. Indeed, accordiig this
Italian scholar, Euler is stressing that his ppiei “though
obtained from the example of a yielding surface,
independent of it, because the hypothetical digphants
«have been introduced solely for the sake of aiding
imagination® [11, p. 444]. In other words, Benvenuto
believes that Euler is once again denying the @messicle
need to take into account the deformability of sheporting
medium. We consider this to be a misinterpretatadn
Euler’'s words. In our opinion, what he is in faely®g is
that, after having established his principle, hesdnot need
to keep bringing up“¢enire in censum” —literally, “to
record on a list) the image of the cloth, which was just a
simile, an analogy, used to illustrate his thouayd to help
his readers grasp something that was, at the tiane,
conceptual innovatiorif subsidium nostrae imaginationi3”
Moreover, theGeneral Principleinto which he has merged
kinematics and the constitutive response of thé i be
subsequently used as a black box and insertedtlgiiato
the equilibrium equations — as we have seen eatlieris a
distinctive feature of the displacement methodwé# now
recall that the problem to be solved was that wdifig the
forces exerted on the support — Euler is not istecein the
magnitude of the displacemerger se as long as they are

is
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small —, it is readily recognized that the prediset finite)
value of the soil's uniform stiffness is immaterial

The irony in all this is striking: the cloth thatuler
meant solely as a visual aid turned out to be, demturies
later, greatly responsible for the misinterpretatiof his
memoir and the failure to grasp its full significen The
irony is all the more striking because Jacob Beli®u
transcript of Euler’s notebooks [9] does not camtaisingle
reference to this imaginary cloth. This argumenbysno
means decisive, and we build our entire case withou
alluding to it, since it is not possible to assé&snature and
extent of Jacob Bernoulli's editorial work withodirect
access to Euler’s notes.

One final remark: even if we accept Benvenuto's
interpretation (which we do not), we must granteeuhe
priority in creating the displacement method. Acting to
Truesdell, “the first principle of historical reseh in
mechanics [is] that the meaning is to be infernednf the
use, since successful application has always pegeced
statement of the principle being applied” [13, p4R Euler
not only devised a solution method to the “probleimn
supports” that exhibits the basic features of tispldcement
method (even if we concede that he could not setisfily
explain how and why it worked), he also succesgfull
applied it to several examples.

The displacement method catches the train

Two subsequent milestones in the early developmogtite
displacement method deserve to be briefly mentidrezd.

After the publication of Euler's memoir, the next
significant contribution to the development of the
displacement method is to be found, half a cenlatsgr, in
Navier's celebrated lecture notes [5]. Navier agplithe
method to the analysis of the plane trusses showigure 1,
and this represents a distinct progress — the focoges
from the support reactions on a solid body to titerhal
forces in the bars of a framework, an important pragsing
engineering problem at a time of rapid expansionthef
railway networks in Europe and North America. Arath
important development is the consideration of déffe
“elasticity forces” (.e. different flexibilities) for each bar.
Equally important is the fact that Navier openlgtes the
combined use of statics, kinematics and elasticity.

The complete systematization of the displacemetitade
for truss analysis, allowing for any number of reded
bars, was accomplished by Clebsch in section $fisdfeatise
of 1862 [3, 4]. He introduced stiffness coefficieand their

AN A K
FIGURE 1

PLANE TRUSSESANALYZED BY NAVIER [5].

A A
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determinants, foreshadowing the matrix formulatainthe
method that would take place in the™™@entury [14].
Clebsch also considered frameworks with bars stdajleto
bending (section 91 of his treatise), but he ditdauhieve in
this case the same degree of closure and elegance.

LECTURING THE DISPLACEMENT METHOD TODAY

In civil, mechanical and aerospace engineering sEsjr
students are usually first exposed to the displacemethod
in the discipline of strength of materials. The hoet is
further developed in subsequent disciplines oncsiral
analysis, usually with the adoption of a matrixnfiatism,
and its application is extended to non-linear airdet
dependent problems. Very often, the finite elemaathod
is presented as a generalization of the displacemethod.

In most textbooks on strength of materials — for
definiteness, we choose Dias da Silv&/echanics and
Strength of Material$15], but nearly any other would serve
as well, except that some are less careful to sasetly
what is done and what the assumptions are — tsemegion of
the displacement method follows a problem-basedozu.
The problem with two degrees of kinematical indefieacy
shown in Figure 2, slightly adapted from [15, p8]Jl6is
typical of such an approach. It can be rightfudgarded as a
two-dimensional analog of EulerBroblem 2 in which he
considers a weight resting on a plane by meanswfgoint
supports, arranged according to the vertices of a
parallelogram — the role of the deformable fouratats now
played by the props. (A horizontal support has badded
with the sole purpose of properly restraining tteicsural
model against rigid body displacement.)

Let us assume that the vertical displacementsraedl s
and the props do not buckle, so that the hypothesis
geometric linearity holds. For convenience, we refa
horizontal axis along the beam, with origin at ahitsary
point O.

The equilibrium equations for this simple model are

3 3

ZJ:G’ZJ

X.
i=L i=L

f=XG 1)

wheref; is the compressive force in prppG is the applied
load, andx; andX denote the abscissas corresponding to the
propj and to the loa@. Incidentally, students are expected
to recognize that the moment equilibrium conditien

|lG
O @ G

FIGURE 2
RIGID BEAM SUPPORTED BYTHREEVERTICAL AND LINEARLY ELASTIC PROPS
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configuration-dependent; it is written for the ufatened
configuration as a consequence of geometric lihgas
frequently overlooked detail at undergraduate level

The forcef; in propj is related to its axial shortenimf)
through the linear elastic constitutive relation

fi=k4,
where the proportionality constagtis called the stiffness of

the prop.
Kinematics provides the final set of equations:

()

4, =d =D+D,x, 3

le

FIGURE 3
RIGID BEAM ON A LINEARLY ELASTIC FOUNDATION.

still equals two and the solution procedure oudirsbove
requires only minor adaptations — basically, thesations
have to be replaced by integrals, as Euler acotedgrves in
8§ 12 of his memoir.

Finally, returning to the problem shown in Figuren

whered is the downward vertical displacement of the top ¢ould consider, in addition to the applied fo®eindirect

extremity of the prop and;, D, are the two generalized
displacements characterizing the final configurataf the
rigid beam (the downward vertical displacementhef origin
O and the clockwise rotation of the beam).

Equations (2) and (3) — constitutive relation and

kinematics — may be combined to give

f, =k (D,+D,x)=Dk + D,k x. ()
Now, if we assume, as Euler tacitly did, that theps have
equal stiffnessek{=k,=kz=Kk), then (4) reduces to

fi=k(D,+D,x)=Dk+D,kx=a+8x. (5
Therefore, the forces in the props define a stidigk, and
this is precisely (a specialized version of) EdéBeneral

Principle! Inserting this result into the equilibrium equets
(1), we get

3

i(&Hﬁxj):G, > (a+ﬁxj)= X G,

j=1 j=1

(6)

wherefrom the unknowns, [ (generalized displacements

D,, D, scaled by the stiffness coefficidgtare readily found.
Finally, substituting the values af and S back into (5)
yields the force§ in the props, which do not dependlon

actions such as temperature changes, settlemesippbrts
or prestress in one of the props — these indit@ires do not
appear in Euler’'s memoir, but they can be accomtaedda a
straightforward and natural way.

These examples illustrate a friendly and non-abstra
presentation of the fundamental concepts assocuetbdhe
displacement method, which turns out to be strongligted
to the historical origins of the method. On thignfi
foundation, we can build more effectively a general
procedure for the linear analysis of kinematically
indeterminate skeletal structures, and not jusd rigpdies
connected by elastic links. We believe that theagedic
message is clear: History of Science can be usedhance
the effectiveness of engineering education.

CONCLUSIONS

The inception and early unfolding of concepts arethods
may often be of considerable pedagogic value, stheg
then appear reduced to their very core, or crysgall in
special circumstances — but not too special, incividase
we might deflect the students from the general theather
than lead them towards it. We illustrated this paiuith a
specific example taken from the undergraduate civil
engineering curriculum — we showed that the approac
typically used to introduce the displacement mettudd
structural analysis closely follows Euler’s line r@asoning
in the memoir De pressione ponderis in planum cui

We may generalize the above problem in a number ofihcympit The paper includes an in-depth analysis of but a

ways. The immediate one is to consider differeifitnsisses
for the props. Euler'§&eneral Principleno longer holds, but
the basic features of his solution procedure rereaiirely
valid. In this case, the forcdsdepend on the ratios of the

small part of this text — the one dealing with thedamental
ideas underpinning the displacement method —, aeanied
by a translation of the passages that are cemrabur
interpretation. Based on this analysis, we claiat thuler

stiffness coefficients;, but not on the absolute magnitudes gnould be credited, in plain justice, with the treaof the

of these quantities.
Another generalization, in the spirit of Eule@General

displacement method.
A final remark: Euler's memoir contains other seahin

Problem is to replace the props by a continuous linearly concepts, not touched upon in the present papeor— f

elastic foundation, with stiffneds per unit length. This is
known today as Winkler's model and is shown schaalft
in Figure 3. We see that the problem changes itn fo the
rigid beam no longer stands on a finite number oihp
supports, but rests instead on a continuous basevéhmay
view as consisting of infinitely many linearly efi@svertical
springs. Nevertheless, the degree of kinematidatérminacy
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instance, the problem of unilateral supports, athsgreat
importance in soil mechanics and foundation enginge
and the definition of the core (or kern) of a cresstion.
Euler's approach to these matters might again prove
valuable in the classroom.
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