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Abstract - The fact that the search engine Google™ is a concepts we have omitted rigorous definitions & terms

popular tool known by our students can be used toatch
their attention in the classroom. Google recognizethat
the PageRank™ algorithm is still the basic tool othe
engine. In fact, this algorithm has already caughtthe
interest of the researchers in mathematics and itsi an
active field of investigation. In this paper it isshown how

to use the key-concept of the search engine Google,

namely the PageRank, to illustrate some topics of
mathematics. In order to explain how this algorithm
works one has to deal with the following items: radom
process, random walk, conditional probability, totd
probability theorem, Markov chain, incidence matrix,
stochastic matrix, eigenvalues, eigenvectors, vectgpace,

spectral radius, matrix product, directed graph,
stationary state, numerical methods and iterative
methods for linear systems of equations. This

communication describes how to introduce these coapts
in a very suggestive way and connected with the tapof
Google’'s PageRank.

Index Terms — lterative methods,
mathematical modeling, PageRank, probability.

INTRODUCTION

The concept of crawling the internet is a commamtéor
our students. For this reason, it is normal thagmitve use
this term in the classroom, the students feelttf@teacher is
going to explain something familiar for them; sohieg
connected with their world made up with interndated
terms like myspace.com, messenger.com, secondlifear
popomundo.com. When you talk about Google, theytase
think: this person is going to say something irggng! In
fact, some of us have first noticed the existerfc8angle in
the late 90's when our students told us that theas a
fantastic searcher called that way. Some years, latethe
course of a research project about Markov chains,
became in contact with the theoretical foundatioin&oogle
and begun to incorporate some of the concepts oflecs
a part of the material used as examples in thesrdas. In
this communication we try to put in order someld tdeas
that we have been using in the classroom for saaesy The
aim of this paper is to show how these ideas cansee to
illustrate real applications of mathematics to stud of
mathematics, computer science or engineering pnogra
Since the purpose of this paper is to focus on &g
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matrix analysis,

involved letting this task to the teachers intexdsin using
these notes in their classrooms. The paper istated as
follows. Each section is named after the main cphteat it
is treated therein. The aim in each section ishowsthe
connection of each topic with the main algorithmGxfogle:
the PageRank algorithm [1] that computes a veattdihg a
global measure of importance for each web page.

SYSTEMS OF LINEAR EQUATIONS

Let us consider a system af linear equations withn
unknowns of the form

a:I.1X1 + a12)(2 + + a:I.an = b1
Xt ayX, * +a,,%, =b,
: . . (1)
anlxl + a'n2X2 + + anan = bn
where @; , X, and b, are real numbers for all the values of

U
the indiced andj.

The engineers at Google have to deal with a system
linear equations which size is that of the web thatrawled
by Google. That is to say they have to handle systef the
order of billions of equations with billions of uméwns.

How do they manage to handle this amazing number of

equations? Indeed, this problem has been addressdde
largest matrix computation ever made [2]. Obvioughe
first thing that we need to do is to use an eadgtiom. Try
to imagine that we have to write explicitly (1) wibillions
of equations! That is nonsense. With the aid ofdbecepts
of matrix, column vector (a particular type of nigtrand
product of two matrices we can write (1) in theyshort
form

w

Ax=Dh, 2

where we have denoted Bythe matrix of the system- an

ordered array ofn’ elements with a laying on the
intersection of théth row and thgth column of A- and by
andb the column vector of unknowns and the column wecto

of the right hand side of (1), respectively. Tliere we have
now a useful notation to treat, at least theorbyicahis
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enormous system of equations. In the followingisestwe called connectivity matrix, whichsummarizes all the
see how a system like (2) can be associated withgléts  information in Figure 2. We define the connectivitgr
PageRank and we also will show how to solve thidbjem. hyperlink) matrix associated with a directed gregsh the

square matrix with element:gij such that they have the

CONNECTIVITY MATRIX . . : . L
value 1 if there is a connection from page j togagwith

In order to illustrate how to construct a matrixsa@ciated I # ], and O otherwise. Therefore the connectivity matrix
with a set of web pages crawled by Google, letarssicler  for the directed graph in Figure 2 is
the Figure 1. In this figure four web pages witteith

outgoing links (outlinks) are shown. The destinatid each 01 1 1
link is also indicated. For example, in page 3 ¢hare
outlinks that go to pages 1 and 2. G = 1011 3)
1101
] 5 0100
Now we have a matrix to illustrate the connections
—_—2 —1 o .
between the web pages. Connectivity matrices are
—3 —3 nonnegative matrices since their elements are all
S—— nonnegative. These matrices are also called spaaseces

since they use to have a great percentage of ZEhese are
special procedures to work with sparse matrices|{3j

In order to show how Google constructs a maftito
form a system of equations like (2) we need ficstntake
3 4 some comments about random walks and Markov presess
We do this in the next sections.

—1 —1
RANDOM WALK
— 2 —?2
—3 In this section we present the classic model ofrdom

walk, also called 'drunkard’s walk'. Let us assuthat a
person is walking on a line witin discrete positions
A WEB CONSISTING OF FOFUISLF-’JARGI?E;SHOWING THEIR OUTLINKS accordlng o the fO"OWing rU|e: The Wal-ker tOSin and
if it is head he makes a step to the right and rotise he

How can we describe the structure of the links ketw makes a step to the left; see Figure 3.

these four pages? One way to do that is to defihat us

called the directed graph associated with the skt @ /;\ //;\ 0
connections. In fact, this graph is just a schezaliyi way of L \_

depicting the same information that is exhibited~igure 1.

In the present case, the directed graph associtbdthe FIGURE 3

connections of the web shown in Figure 1 is shawhigure A LINE SHOWING DISCRETE POSITIONS

2. The pages have been substituted by numbersdcalle )

vertexes. We also admit that when the person reaches annextre

of the line then in the next movement he turns back
independently of the outcome of the flip. We areiiested
>3 in describing the movement of this walker. In parkar,
l when the person begins at position marked as Hat wan
4

—
A

we say about the position (or state) of the walkben he
has taken some steps? We are in front of a randobigm.
We can not give a deterministic answer to this [@ob To

fix ideas, letAt be a time interval and let us describe the time
by the expression

t=kAt, k=012 ... (4)

FIGURE 2
DIRECTED GRAPH ASSOCIATED WITH THE SET OF PAGES OF EIRE 1. and let us denote b)p (k) the prObablllty of f|nd|ng the
|

We have gained clarity in our treatment since #asier walker in the positioni on the line of Figure 3, at instant
to draw Figure 2 than Figure 1. Now we can defimeadrix,  time given byk . In order to describe the state of the walker
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in a certain timek we construct the probability distribution can we manage to solve this situation? We showithike

vector V,, which is a nonnegative vector such that the Suntlollowmg section where we introduce Markov proesss

of its components is one, and it is given by theregsion

k
pl(k) The concepts of matrices and product of a matria gctor
pz( ) () will help us easily describe some computationsstFlet us

: ' define a matrixP, called a transition matrix, associated with
the random walk seen in the previous section. Let

P = (p; ) where p; is the probability that the walker goes

MARKOV CHAINS

Pn (K)

. . . -y - . + - .
For example, if we start the experimenttae O, with to the positioni at time K +1 given that he was at position

the walker at position '1' of the line depictedFigure 3 we ) attime K. In our example it is easy to show that
have that the initial state of the walker is gilmn

12 if i=j-1j=23..n-1
PO |1 Y2 if i=j+1j=23...,n-1

= P (0| _10] © Pl it i=2j=1 ©)
: : 1 if i=n-1j=n
PO [0 0  otherwise

since we know that the walker is at position '18 aro
uncertainty is assumed. In the following throwirfghe coin
we know, since we have imposed this rule, thatvihéer

and this can be written in matrix form as follows

will go to the position denoted by '2'. Therefdarés clear 0 1/2
that 1 0 1/2
p@| |0 p=| 2 .9 1/2 N . (10)
v, pzz(l) - 1 (7) w2 0 1
0. () 0 L 1/2 0]

In the next movement we have uncertainty since the Wherepij lies in the position given by rowl and

walker can go to the left or to the right with tsame columnj. Note that this matrix is sparse. Since it is

probability. Therefore, it is clear that nonnegative and each column sum equals one, #lisdca
~ o (column) stochastic matrix. Now it is easy to saed here
P, 2 1/2 as in (2) we have a good opportunity to motivate th
somewhat strange form of the concept of product of
P, (2) 0 matrices- that we have
v, =| p;(2) |=|1/2 : (8) _ _ _
: : v, =Pvy,, v, =Py, v;=Pv,. (12)
1 P.@] | 0| We note now that
We remark that the position of the walker giveraay v, = Pv, = PPy, = P2V1 = PBVo- (12)

time described byK is given by a state vectof, as in (5).

Here the teacher may explain the notation for the
product of matrices and its properties. In ournepie, it is
easy to show that for any instant time givenKikge
following equations hold

The vector V, is called the initial state vector. Observe that

in each consecutive movement we are distributing th
probabilities and this allows us to compute theestaector

V, at any time. But if we want to describe the long,re.g.

the state given byk =1000, it would be very tedious to v.=Pv, k=12.. (13)
compute all the intermediate states to reach thi®!sHow
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v, =P%, k=12,... (14) 3. Whetherv,, andV,, are equal.
In the example above it is easy to see that
and (14) implies that the state vector at the mistane

K can be computed just using the initial state veatut the 1/6
rules of our walker, which are given by matix The states 1/3
given by (13) or (14) are said to form a Markov iohar Vo = , (19)
define a Markov process; see, for example [4] fetais. 1/3

Let us consider a random walk on a line with omyrf

permitted positions, i.e.l = 4, with the notation of Figure
3. In this case the transition matrix is, accordm@10)

1/6

and it is a stationary state vector since it siesfl7) where
P is given by (15). Here the teacher can suggests th

0 172 0 O following homework for the students: to show thaist
|11 0 12 0 system oscillates, whek is large enough (taking k=15 the
P= 0 1/2 0 1 : (15) phenomenon is already observed) between the states

0O 0 1/2 0O 1/3 0
N 0 2/3

Let us assume that the walker begins its walk at th V. = Vo, = (20)

m ' mH: '

position '1', i.ey,has the form given by (6). We are 2/3 0
interested, for example, in the instant of time egivby 1/6 1/3

k =10. What can be say about the walker? An easy
computation (here we recommend to use some softsuante

as Matlab™, Derive™ or Mathematica™) shows that We remark that (19) means that in our example we ha
that the vectorv, does not exist wheiv,is given by (6).

1/3 Therefore, this is an example showing ¥atand vV, are not
Vy = plo v, = 0 ' (16) equal. However, the PageRank vector is a vectot tha
2/3 satisfiesv,, = V,, . Moreover, the matrixP for the Google
0 problem has another interesting property: the éiyual
V. =V, is satisfied for any choice of the initial statctor

which means that, fok =10, the probability to find the V, . The PageRank vector gives the long run probgitit

walker at position '1' isl/3, the probability to find him at find a walker (a web surfer) in each web page.hia text

position '3'is 2/3, and the rest of probabilities are zero. Insection we focus on how the Google matrix is camséd.

conclusion, the location most likely to find the linex is

position '3, whek =10; In other words, at this time, the

most important position is '3". In a similar wagr fa set of THE GOOGLE MATRIX

web pages, Google assumes that the most importabht w

page is that with the biggest probability to findcandom We have already seen how to associate a conngatiaitrix

walker in it [5]. G to a set of pages. Now, we show how to modByto
We remark here that matrik , given by (10), does not qpain a stochastic matriP . Given a matrixG = (g; ) we

depend on the time, i.e., it does not dependkonThis .

means, in other words, that our walker has alwhgssame

rules. In these cases it is said that the Marko&irc is N

homogeneous, since it is not a function of time. &k now c, = Z g 1

=1

define the quantities

<j<
interested in the following topics: s)=n (21)

1. Whether there exists a state vector, called station

state vector, such that ) ] )
and the stochastic matri® = (p; ) given by

Vest = P Vest' (17) .
g;/c; ifc; #0 .
. . - , 1<i,j<n (22)
2. Whether there exits a limit state vecty , such that I 0 otherwise
vV, = II(im =k V. (18) In our example, wheré&s is given by (3), we obtain
Coimbra, Portugal September 3 — 7, 2007
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0 1/3 1/2 1/3
1/2 0 1/2 1/3

P= . (23)
1/2 1/3 0 1/3

0O 13 0 O

Matrix P given by (23) is called the Google matak the
web considered.

GOOGLE’S PAGERANK

Where Vis a probability distribution vector amf@ < a < 1.
Once the unknowny has been solved the PageRank vector
X is then computed using the expression

=Y

(27)

e'y
where € =[1 1 1]. The linear system (26) is
formally a system like (1) with the coefficient mat

A=1—-aP. This matrix results to be a nonsingular M-
matrix [6] which implies that some known iteratimeethods

We have seen that the PageRank vector is a velotdr t for linear systems can be applied for solving (Z&e e.qg.
satisfiesV,., = V,, and this holds for any choice of the initial [8]- In the next section we introduce these kintimethods.

state vectonv, . Therefore, if we denote b the PageRank
vector we have, from (17), that

Px=x . (24)

Note that this is a particular case of the eigetorec

problem that we study in a first course of univigtsWe

recall that given a square matril, the nonzero vectors

X that satisfy the equation

AX=AX, (25)

ITERATIVE METHODS

We have shown that the PageRank problem can be
formulated either as (24) if we consider the problas an
eigenvalue problem, or as a linear system like.(2@)en we
compute eigenvectors in the classroom we use reatioé
order 3 or 4 and we do the computations by hand.
Nevertheless, when we have a matrix of a remarksizie
(up to billions) we can not use the direct methtus we
show in the classroom. Not even with a computetrect
method would be useful! We have to deal with et
methods. An easy way to introduce the nature oftdrative
methods is the following. Let us consider the eigmatvith

with A real (or complex) numbers, are called eigenvector§ne unknown

of A associated witd . Therefore, the computation of the

PageRank vector is an eigenvector problem! In féwog,
PageRank vector is a nonnegative eigenvector gmoneking

to the eigenvalued =1 and such that the sum of its

components is one. In general, the Google maRigiven
by (22) will not have the desired properties anchsaninor
modifications have to be made in order to ensuat the
matrix admits an eigenvector with the propertiestiomed
above. The Perron-Frobenius theorem is the baperform
these minor modifications. In more detail, whddis
stochastic and primitive (nonnegative, irreduciblend

3Xx=6. (28)

I 1 o
Clearly, the solution |sx=§6= 2. Let us imagine

that we don’t know how to compute the fracti% and

thus we have to invent a method to solve (28) spéation,
i.e., we may give arbitrary values %in the hope that we
chose the exact value that satisfies (28). Thisatehas the
disadvantage that we have infinite values Xfo prove.

A =1is the only eigenvalue which norm is the spectralObviously, in the case of having a system Bfinear
radiug) then the PageRank vector exists. In this case it equations the possibility of finding a solution imgpection

said that the Markov chain is ergodic. See, [6]details.
A LINEAR SYSTEM FOR GOOGLE

Some authors [5], [7] showed that the PageRanki@nolban
be formulated as the following linear problem

(I —aP)y=v (26)

* A matrix is irreducible if it associated directggph is such that one can
go from any vertex to any other vertex, perhapseiveral steps.

2 The spectral radius is the maximum of the absalakees of the
eigenvalues
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is very small. Let us suppose, instead, that w&rdw how

to compute the fraction% and we do the following: we

split the number3as 3=5—2and therefore (28) can be
written as

G-2)x=6, (29)

and this allows to write

1

:12x+—6, (30)
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and now we apply the following: a random valueXofvould
not probably solve this equation and thereforeritlet hand
side of (30) would be different than its left hagide. Let us

complicated and require, among other conditionat the

spectral radius oM N be less or equal than 1; see [6], [8].
The classical method of solving the eigenvalue |emob

denote byX,the initial guess that we prove on the right hand(23) in an iterative way is by using the scheme

side of (30) and byx, the value that we obtain in the left
hand side, i.e.,

1 1
=—2x,+-6 31
XEENTE (31)

We want to fulfill (31) with X, = X,. Since we shall prove a

random value ofX,it is not likely that X, = X,. Therefore
we will have to repeat this method but taking n@naaguess
the value ofX, . In conclusion we formally have to deal with
the successive approximations

2 6
Xewr = = % +g’

k=0,
5

12... (32)

This expression is called an iterative scheme.hia t
Table 1 we show the values for the successiyewhen we

begin with X,=1.0.

TABLE |
VALUES FOR Xk GIVEN BY (32)

Xk
1.000
1.600
1.840
1.936
1.974
1.990
1.996
1.998
1.999

O N[O|O|A[(WIN|F|O

In Table 1 it is shown thaX, converges to 2.0 ak

becomes greater. In this point the teacher mayaéxghe
difference between convergent and divergent mettzodb
the theorems related. In the case of linear systehithe

form AX=Dbthe convergence of the iterative methods can

be studied in terms of the splitting of matr&in the form

A=M —Nwhere M is a nonsingular matrix, and
considering the iterative scheme

X, =M7INx +M %, k=012... (33)

It is known [6] that when A is nonsingular the

Xs =Px, k=012... (34)
which is calledPower methodnd is the method that Google
uses to compute the PageRank vector; see [1]1nfb]9 for

details.
CONCLUSIONS

Some concepts related with Google’s PageRank ham be
shown. In each section we have motivated the terms
introduced mainly relating them with the performiafjthe
inner algorithm of the Google searcher. In our eiqunee,
these sorts of explanations help catch the attentfoour
students increasing their participation in thenéay process.
These concepts also allow to illustrate that liredgebra is a
broadly applicable branch of mathematics and regeaie
connections between separate parts of mathematics.
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convergence of this scheme it is guaranteed when th

spectral radius of the iteration matriv N s less than 1.
When the coefficient matriXA is a singular matrix (as in the

case of Google) the convergence conditions are more
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