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Abstract - The fact that the search engine Google™ is a 
popular tool known by our students can be used to catch 
their attention in the classroom. Google recognizes that 
the PageRank™ algorithm is still the basic tool of the 
engine. In fact, this algorithm has already caught the 
interest of the researchers in mathematics and it is an 
active field of investigation. In this paper it is shown how 
to use the key-concept of the search engine Google, 
namely the PageRank, to illustrate some topics of 
mathematics. In order to explain how this algorithm 
works one has to deal with the following items: random 
process, random walk, conditional probability, total 
probability theorem, Markov chain, incidence matrix, 
stochastic matrix, eigenvalues, eigenvectors, vector space, 
spectral radius, matrix product,  directed graph, 
stationary state, numerical methods and iterative 
methods for linear systems of equations. This 
communication describes how to introduce these concepts 
in a very suggestive way and connected with the topic of 
Google’s PageRank.  
 
Index Terms – Iterative methods, matrix analysis, 
mathematical modeling, PageRank, probability. 

INTRODUCTION  

The concept of crawling the internet is a common term for 
our students. For this reason, it is normal that when we use 
this term in the classroom, the students feel that the teacher is 
going to explain something familiar for them; something 
connected with their world made up with internet-related 
terms like myspace.com, messenger.com, secondlife.com or 
popomundo.com. When you talk about Google, they use to 
think: this person is going to say something interesting! In 
fact, some of us have first noticed the existence of Google in 
the late 90’s when our students told us that there was a 
fantastic searcher called that way. Some years later, in the 
course of a research project about Markov chains, we 
became in contact with the theoretical foundations of Google 
and begun to incorporate some of the concepts of Google as 
a part of the material used as examples in the classroom. In 
this communication we try to put in order some of the ideas 
that we have been using in the classroom for some years. The 
aim of this paper is to show how these ideas can be used to 
illustrate real applications of mathematics to students of 
mathematics, computer science or engineering programs. 
Since the purpose of this paper is to focus on Google’s 

concepts we have omitted rigorous definitions of the terms 
involved letting this task to the teachers interested in using 
these notes in their classrooms. The paper is structured as 
follows. Each section is named after the main concept that it 
is treated therein. The aim in each section is to show the 
connection of each topic with the main algorithm of Google: 
the PageRank algorithm [1] that computes a vector holding a 
global measure of importance for each web page. 

SYSTEMS OF L INEAR EQUATIONS  

Let us consider a system of n linear equations with n 
unknowns of the form 
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where ija , ix  and ib are real numbers for all the values of 

the indices i and j.  
The engineers at Google have to deal with a system of 

linear equations which size is that of the web that is crawled 
by Google. That is to say they have to handle systems of the 
order of billions of equations with billions of unknowns. 
How do they manage to handle this amazing number of 
equations? Indeed, this problem has been addressed as the 
largest matrix computation ever made [2]. Obviously, the 
first thing that we need to do is to use an easy notation. Try 
to imagine that we have to write explicitly (1) with billions 
of equations! That is nonsense. With the aid of the concepts 
of matrix, column vector (a particular type of matrix) and 
product of two matrices we can write (1) in the very short 
form  
 

Ax = b ,                      (2) 
 
where we have denoted by A the matrix of the system- an 

ordered array of n2 elements with ija laying on the 

intersection of the ith row and the jth column of A- and by x 
and b the column vector of unknowns and the column vector 
of the right hand side of (1), respectively.  Therefore we have 
now a useful notation to treat, at least theoretically, this 
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enormous system of equations. In the following sections we 
see how a system like (2) can be associated with Google’s 
PageRank and we also will show how to solve this problem. 

CONNECTIVITY  M ATRIX  

In order to illustrate how to construct a matrix associated 
with a set of web pages crawled by Google, let us consider 
the Figure 1. In this figure four web pages with their 
outgoing links (outlinks) are shown. The destination of each 
link is also indicated. For example, in page 3 there are 
outlinks that go to pages 1 and 2.  
 

 
 

FIGURE 1 
A WEB CONSISTING OF FOUR PAGES SHOWING THEIR OUTLINKS. 

 
How can we describe the structure of the links between 

these four pages? One way to do that is to define what is 
called the directed graph associated with the set of 
connections. In fact, this graph is just a schematically way of 
depicting the same information that is exhibited in Figure 1. 
In the present case, the directed graph associated with the 
connections of the web shown in Figure 1 is shown in Figure 
2. The pages have been substituted by numbers called 
vertexes. 

 
 

FIGURE 2 
DIRECTED GRAPH ASSOCIATED WITH THE SET OF PAGES OF FIGURE 1. 

 
We have gained clarity in our treatment since it is easier 

to draw Figure 2 than Figure 1. Now we can define a matrix, 

called connectivity matrix, which summarizes all the 
information in Figure 2. We define the connectivity (or 
hyperlink) matrix associated with a directed graph as the 

square matrix with elements ijg such that they have the 

value 1 if there is a connection from page j to page i, with 
ji ≠ , and 0  otherwise. Therefore the connectivity matrix 

for the directed graph in Figure 2 is 
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Now we have a matrix to illustrate the connections 

between the web pages. Connectivity matrices are 
nonnegative matrices since their elements are all 
nonnegative. These matrices are also called sparse matrices 
since they use to have a great percentage of zeros. There are 
special procedures to work with sparse matrices; see [3]. 

In order to show how Google constructs a matrix A to 
form a system of equations like (2) we need first to make 
some comments about random walks and Markov processes. 
We do this in the next sections.  

RANDOM WALK  

In this section we present the classic model of a random 
walk, also called 'drunkard’s walk'. Let us assume that a 
person is walking on a line with n discrete positions 
according to the following rule: The walker tosses a coin and 
if it is head he makes a step to the right and otherwise he 
makes a step to the left; see Figure 3. 
 

 
 

FIGURE 3 
A LINE SHOWING DISCRETE POSITIONS. 

 
We also admit that when the person reaches an extreme 

of the line then in the next movement he turns back, 
independently of the outcome of the flip. We are interested 
in describing the movement of this walker. In particular, 
when the person begins at position marked as '1', what can 
we say about the position (or state) of the walker when he 
has taken some steps? We are in front of a random problem. 
We can not give a deterministic answer to this problem. To 
fix ideas, let ∆t be a time interval and let us describe the time 
by the expression 
 

   K,2,1,0, =∆= ktkt        (4) 

 

and let us denote by )(kpi the probability of finding the 

walker in the position i on the line of Figure 3, at instant 

time given by k . In order to describe the state of the walker 
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in a certain time k  we construct the probability distribution 

vector kv , which is a nonnegative vector such that the sum 

of its components is one, and it is given by the expression 
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For example, if we start the experiment at 0=t , with 

the walker at position '1' of the line depicted in Figure 3 we 
have that the initial state of the walker is given by 
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since we know that the walker is at position '1' and no 
uncertainty is assumed. In the following throwing of the coin 
we know, since we have imposed this rule, that the walker 
will go to the position denoted by '2'.  Therefore it is clear 
that  
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In the next movement we have uncertainty since the 

walker can go to the left or to the right with the same 
probability. Therefore, it is clear that 
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We remark that the position of the walker given at any 

time described by k  is given by a state vector kv  as in (5). 

The vector  0v  is called the initial state vector.  Observe that 

in each consecutive movement we are distributing the 
probabilities and this allows us to compute the state vector 

kv  at any time. But if we want to describe the long run, e.g. 

the state given by 1000=k , it would be very tedious to 
compute all the intermediate states to reach this state! How 

can we manage to solve this situation? We show this in the 
following section where we introduce Markov processes. 

 

M ARKOV CHAINS  

The concepts of matrices and product of a matrix by a vector 
will help us easily describe some computations. First, let us 
define a matrix P, called a transition matrix, associated with 
the random walk seen in the previous section. Let 

)( ijpP = where ijp is the probability that the walker goes 

to the position i at time 1+k  given that he was at position 
j at time k . In our example it is easy to show that 
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and this can be written in matrix form as follows 
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Where ijp lies in the position given by row i and 

column j .  Note that this matrix is sparse. Since it is 

nonnegative and each column sum equals one, it is called a 
(column) stochastic matrix.  Now it is easy to see -and here 
as in (2) we have a good opportunity to motivate the 
somewhat strange form of the concept of product of 
matrices- that we have 

 

          .,, 231201 PvvPvvPvv ===               (11) 

 
We note now that  
 

0
3

1
2

123 vPvPPPvPvv ==== .              (12) 

 
Here the teacher may explain the notation for the 

product of matrices and its properties.  In our example, it is 
easy to show that for any instant time given byk the 
following equations hold 

 

              K,2,11 == − kPvv kk                  (13) 
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           K,2,10 == kvPv k
k                         (14) 

 
and (14) implies that the state vector at the instant time 
k can be computed just using the initial state vector and the 
rules of our walker, which are given by matrixP . The states 
given by (13) or (14) are said to form a Markov chain or 
define a Markov process; see, for example [4] for details. 

Let us consider a random walk on a line with only four 
permitted positions, i.e., 4=n , with the notation of Figure 
3. In this case the transition matrix is, according to (10) 
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Let us assume that the walker begins its walk at the 

position '1', i.e., 0v has the form given by (6). We are 

interested, for example, in the instant of time given by 
10=k . What can be say about the walker? An easy 

computation (here we recommend to use some software such 
as Matlab™, Derive™  or Mathematica™) shows that  
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which means that, for 10=k , the probability to find the 

walker at position '1' is 3/1 , the probability to find him at 

position '3' is  3/2 , and the rest of probabilities are zero. In 
conclusion, the location most likely to find the walker is 
position  '3', when 10=k ; In other words, at this time, the 
most important position is '3'. In a similar way, for a set of 
web pages, Google assumes that the most important web 
page is that with the biggest probability to find a random 
walker in it [5]. 

We remark here that matrix P , given by (10), does not 
depend on the time, i.e., it does not depend on k . This 
means, in other words, that our walker has always the same 
rules.  In these cases it is said that the Markov chain is 
homogeneous, since it is not a function of time. We are now 
interested in the following topics: 
1. Whether there exists a state vector, called stationary 

state vector, such that 
 

estest vPv = .          (17) 

 

2. Whether there exits a limit state vector ∞v , such that 

 

                 0lim vPv k

k ∞→∞ = .                            (18) 

3. Whether estv  and ∞v  are equal. 

In the example above it is easy to see that  
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and it is a stationary state vector since it satisfies (17) where 
P  is given by (15). Here the teacher can suggests the 
following homework for the students: to show that this 
system oscillates, when k is large enough (taking k=15 the 
phenomenon is already observed) between the states  
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We remark that (19) means that in our example we have 

that the vector ∞v does not exist when 0v is given by (6). 

Therefore, this is an example showing that∞v  and 0v are not 

equal. However, the PageRank vector is a vector that 

satisfies ∞= vvest . Moreover, the matrix P  for the Google 

problem has another interesting property: the equality 

∞= vvest  is satisfied for any choice of the initial state vector 

0v . The PageRank vector gives the long run probability to 

find a walker (a web surfer) in each web page. In the next 
section we focus on how the Google matrix is constructed. 
 

THE GOOGLE MATRIX  

We have already seen how to associate a connectivity matrix 
G  to a set of pages. Now, we show how to modify G to 

obtain a stochastic matrix P . Given a matrix )( ijgG = we 

define the quantities 
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and the stochastic matrix )( ijpP = given by  
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In our example, where G  is given by (3), we obtain 
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Matrix P given by (23) is called the Google matrix of the 
web considered. 

GOOGLE ’S PAGERANK 

We have seen that the PageRank vector is a vector that 

satisfies ∞= vvest  and this holds for any choice of the initial 

state vector 0v .  Therefore, if we denote by x the PageRank 

vector we have, from (17), that  
 

xPx = .                     (24) 

 
Note that this is a particular case of the eigenvector 

problem that we study in a first course of university. We 
recall that given a square matrix A , the nonzero vectors 
x that satisfy the equation  

 
xxA λ= ,          (25) 

 
with λ  real (or complex) numbers, are called eigenvectors 

of A  associated withλ . Therefore, the computation of the 
PageRank vector is an eigenvector problem! In fact, the 
PageRank vector is a nonnegative eigenvector corresponding 
to the eigenvalue 1=λ  and such that the sum of its 
components is one.  In general, the Google matrix P given 
by (22) will not have the desired properties and some minor 
modifications have to be made in order to ensure that the 
matrix admits an eigenvector with the properties mentioned 
above. The Perron-Frobenius theorem is the base to perform 
these minor modifications.  In more detail, when P is 
stochastic and primitive (nonnegative, irreducible1 and 

1=λ is the only eigenvalue which norm is the spectral 
radius2) then the PageRank vector exists. In this case it is 
said that the Markov chain is ergodic. See, [6] for details.  

A L INEAR SYSTEM FOR GOOGLE 

Some authors [5], [7] showed that the PageRank problem can 
be formulated as the following linear problem 
 

vyPI =− )( α     .           (26) 

 

                                                           
1 A matrix is irreducible if it associated directed graph is such that one can 
go from any vertex to any other vertex, perhaps in several steps. 
2 The spectral radius is the maximum of the absolute values of the 
eigenvalues 

Where v is a probability distribution vector and .10 << α  

Once the unknown y has been solved the PageRank vector 

x is then computed using the expression 
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where ]111[ L=Te . The linear system (26) is 

formally a system like (1) with the coefficient matrix 
PIA α−= . This matrix results to be a nonsingular M-

matrix [6] which implies that some known iterative methods 
for linear systems can be applied for solving (26), see e.g. 
[8]. In the next section we introduce these kinds of methods. 

ITERATIVE METHODS 

We have shown that the PageRank problem can be 
formulated either as (24) if we consider the problem as an 
eigenvalue problem, or as a linear system like (26). When we 
compute eigenvectors in the classroom we use matrices of 
order 3 or 4 and we do the computations by hand. 
Nevertheless, when we have a matrix of a remarkable size 
(up to billions) we can not use the direct methods that we 
show in the classroom. Not even with a computer a direct 
method would be useful! We have to deal with iterative 
methods. An easy way to introduce the nature of the iterative 
methods is the following. Let us consider the equation with 
one unknown 
 

63 =x  .     (28) 
 

Clearly, the solution is 26
3

1 ==x . Let us imagine 

that we don’t know how to compute the fraction 3
1 and 

thus we have to invent a method to solve (28) by inspection, 
i.e., we may give arbitrary values to x in the hope that we 
chose the exact value that satisfies (28). This method has the 
disadvantage that we have infinite values of x to prove.  
Obviously, in the case of having a system of n linear 
equations the possibility of finding a solution by inspection 
is very small. Let us suppose, instead, that we do know how 

to compute the fraction 5
1 and we do the following: we 

split the number 3as 253 −= and therefore (28) can be 
written as  
 

6)25( =− x ,     (29) 

 
and this allows to write 
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and now we apply the following: a random value of x would 
not probably solve this equation and therefore the right hand 
side of (30) would be different than its left hand side. Let us 

denote by 0x the initial guess that we prove on the right hand 

side of (30) and by 1x the value that we obtain in the left 

hand side, i.e.,  
 

6
5

1
2

5

1
01 += xx  .   (31) 

 

We want to fulfill (31) with 01 xx = . Since we shall prove a 

random value of 0x it is not likely that 01 xx = . Therefore 

we will have to repeat this method but taking now as a guess 

the value of 1x . In conclusion we formally have to deal with 

the successive approximations 
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This expression is called an iterative scheme. In the 

Table 1 we show the values for the successive kx  when we 

begin with 0x =1.0. 

 
TABLE I 

VALUES FOR kx GIVEN BY (32) 

k  
kx  

0 1.000 
1 1.600 
2 1.840 
3 1.936 
4 1.974 
5 1.990 
6 1.996 
7 1.998 
8 1.999 

 

In Table 1 it is shown that kx converges to 2.0 as k  

becomes greater. In this point the teacher may explain the 
difference between convergent and divergent methods and 
the theorems related. In the case of linear systems of the 
form bAx = the convergence of the iterative methods can 
be studied in terms of the splitting of matrix A in the form 

NMA −= where M  is a nonsingular matrix, and 
considering the iterative scheme 

 

K,2,1,0,11
1 =+= −−

+ kbMNxMx kk       (33) 

 
It is known [6] that when A is nonsingular the 

convergence of this scheme it is guaranteed when the 

spectral radius of the iteration matrix NM 1− is less than 1. 
When the coefficient matrix A is a singular matrix (as in the 
case of Google) the convergence conditions are more 

complicated and require, among other conditions, that the 

spectral radius of NM 1− be less or equal than 1; see [6], [8]. 
The classical method of solving the eigenvalue problem 

(23) in an iterative way is by using the scheme 
 

K,2,1,01 ==+ kPxx kk     (34) 

 
which is called Power method and is the method that Google 
uses to compute the PageRank vector; see [1], [5] and [9] for 
details.  

CONCLUSIONS 

Some concepts related with Google’s PageRank has been 
shown. In each section we have motivated the terms 
introduced mainly relating them with the performing of the 
inner algorithm of the Google searcher. In our experience, 
these sorts of explanations help catch the attention of our 
students increasing their participation in the learning process. 
These concepts also allow to illustrate that linear algebra is a 
broadly applicable branch of mathematics and reveal some 
connections between separate parts of mathematics. 
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